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Synthesized human trajectories are crucial for a large number of applications. Existing solutions are mainly
based on the generative adversarial network (GAN), which is limited due to the lack of modeling the human
decision-making process. In this article, we propose a novel imitation learning-based method to synthesize
human trajectories. This model utilizes a novel semantics-based interaction mechanism between the decision-
making strategy and visitations to diverse geographical locations to model them in the semantic domain in
a uniform manner. To augment the modeling ability to the real-world human decision-making policy, we
propose a feature extraction model to extract the internal latent factors of variation of different individuals
and then propose a novel self-attention-based policy net to capture the long-term correlation of mobility
and decision-making patterns. Then, to better reward users’ mobility behavior, we propose a novel multi-
scale reward net combined with mutual information to model the instant reward, long-term reward, and
individual characteristics in a cohesive manner. Extensive experimental results on two real-world trajectory
datasets show that our proposed model can synthesize the most high-quality trajectory data compared with
six state-of-the-art baselines in terms of a number of key usability metrics and can well support practical
applications based on trajectory data, demonstrating its effectiveness. Furthermore, our proposed method can
learn explainable knowledge automatically from data, including explainable statistical features of trajectories
and statistical relation between decision-making policy and features.
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1 Introduction

Synthetic human trajectories are instrumental for a wide-range of applications, including network
service optimization, transportation scheduling, and so on. For example, in cellular networks, based
on synthesized trajectories, we can simulate the detailed process of movement and communication
of network users to have a reliable performance analysis of the network [13, 24]. Similarly, we can
simulate the traffic congestion before and after the implementation of certain policies (e.g., road
expansion) based on synthetic human trajectories, which are crucial for urban planning [23, 39].

However, synthesizing human trajectories is also challenging due to the complicated spatio-
temporal correlation and large stochasticity of the mobility trajectories. The rise of the deep learning
paradigm provides promising solutions to synthesize high-quality human trajectories [10, 18, 22, 26,
36, 44], where the most successful and prominent methods are based on the generative adversarial
network (GAN). Specifically, GAN utilizes a generator to synthesize new data and a discriminator
to distinguish generated data and real data. Then, it is trained through a mutual game between the
generator network and the discriminator network. Utilizing the strong modeling ability of GAN,
existing approaches combine it with Convolutional Neural Network (CNN) [10, 26, 36, 45, 50]
and Recurrent Neural Network (RNN) [18, 22, 40] to synthesize human trajectories. However,
human trajectories are generated by the complicated human decision-making process [8, 31], while
GAN is designed to directly learn the data distribution from demonstrations without modeling
the hidden decision-making process, leading to its weakness including the frequent mode collapse,
lack of interpretability, and under-performance on unseen data [2, 5].

In this article, we propose a novel framework to synthesize human trajectories based on imitation
learning (IL). Different from GAN, our proposed method seeks to model the human decision-
making process based on the state-of-the-art generative adversarial imitation learning (GAIL)
method. After elaborately designing a feature extraction module to obtain important decision-
making features, we propose a novel self-attention-based policy net, which can capture the long-
term correlation of the decision-making process, and a multi-scale reward net that models both
instant reward and long-term reward of human mobility. Furthermore, mutual information is used
to reward synthesized trajectories to guarantee that individual characteristics play a vital role in
guiding the decision-making process. Further, we propose a semantics-based action space and
design a semantics-aware state transition model, which decouples the decision-making process
from the geographical trajectories with large spatial differences. Specifically, the decision of visiting
diverse locations is uniformly modeled in the semantic domain, which helps to extract the principle
human decision-making process in terms of mobility behavior. In summary, our article makes the
following contributions:

— We propose a novel framework based on IL, which is the first work to utilize the IL technique to
synthesize human trajectories. Based on the obtained human mobility strategy, our proposed
model can synthesize high-quality trajectories by simulating the human decision-making
process.

— We propose a novel semantics-based interaction mechanism to decouple the neural network-
based decision-making strategy from diverse geographical locations and alternatively model
them in the semantic domain in a uniform manner, which helps extract the principle human
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decision-making process of mobility behavior. Further, we design neural networks with novel
structures to model the decision-making strategy, including a self-attention-based policy net to
capture the long-term correlation of mobility and decision-making patterns, and a multi-scale
reward net combined with mutual information to model the instant reward, long-term reward,
and individual characteristics in a cohesive manner.

—We conduct extensive experiments on two real-world mobility datasets. Results show that
compared with state-of-the-art algorithms, our model can synthesize the most high-quality
trajectories in terms of a number of key usability metrics. Specifically, the performance metrics
measured by Jensen-Shannon divergence (JSD) is improved on average. In addition, our
model can well support practical applications based on trajectory data, i.e., the mobility
prediction accuracy can be significantly improved based on trajectory datasets augmented by
our proposed model. Furthermore, our proposed method can learn explainable knowledge
automatically from data, including explainable statistical features of trajectories and statistical
relations between decision-making policy and features.

2 Mathematical Model and System Overview

2.1 Mathematical Model

We denote the set of all users as U. The trajectories of users are composed of a series of spatio-
temporal points. To pave the way for modeling the spatio-temporal trajectories of datasets with
different resolutions in a consistent manner, we divide time and locations into fix-sized time slots
and geographical regions. We denote £ and 7 as the set of all regions and time slots, respectively.
Then, the trajectory of each user u € U can be represented by T, = [(l1, t1), (I, t2), ..., (IN, tN)]
with an identical time gap, i.e., ta—t; = t3—t; = ... = ty—tn—1 = At, where N is the trajectory
length. In addition, for the real-world human trajectory, i.e., the expert trajectory, we denote it as
T¢. For the generated trajectory by models, we denote it as T9. Without loss of generality, we only
consider trajectories with the duration of whole days. That is, N = k - Ny, Yk € N, where Ny is
the number of time slots within 1 day. Based on the above notations, the trajectory synthesizing
problem investigated in this article can be formally defined as follows:

Definition 1 (Trajectory Synthesizing Problem). Given the real-world expert trajectories {T;¢ } e/,
synthesizing new trajectories different from the original trajectories. In addition, the synthesized
trajectories should preserve the original trajectory dataset’s usability. Specifically, the preserved
usability means that the synthesized trajectories should statistically resemble real-world trajectories,
and can effectively support practical applications based on trajectory data, e.g., mobility prediction.

2.2 System Overview

Figure 1 shows the framework of our proposed system for trajectory synthesizing. Basically, this
system utilizes the inverse reinforcement learning (IRL) techniques to learn the decision-making
strategy of real-world users and then uses the learned decision-making strategy for generating
trajectories. Specifically, this system takes expert user trajectories as input. Through a feature
extraction module, important decision-making features are obtained based on user trajectories, of
which the corresponding process is called the data level of our system. Then, the semantics level of
our proposed system is utilized as the bridge between the neural network-based decision-making
strategy and the data level. Specifically, the decision-making strategy in our system is defined on the
action space derived from the classical exploration and preferential return (EPR) model [34].
Thus, all actions are able to describe the semantics of user’s movement behavior, which are referred
to as the semantic-based actions. Furthermore, the transition probability model between different
actions discovered in the EPR model [34] is further used in our system, which is referred to as the
semantics-aware state transition model. Specifically, the decision-making strategy interacts with
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Fig. 1. The framework for our system.

trajectory data through the semantics-aware state transition model combined with the extracted
decision-making features. That is, when the decision-making strategy chooses a specific action, the
concrete visited location is determined by the probability distribution coming from the semantics-
aware state transition model. In this way, the data level and decision-making level of our system are
able to be decoupled. For example, when two users with different home locations want to go home,
they can directly select the action corresponding to going home regardless of where their homes are.
Therefore, our proposed model is able to capture the principle decision-making strategy of users
without the interference of the diverse user profile, location profile, and so on. Finally, the decision-
making level of our system is composed of two modules including the policy function and the reward
function, which are all modeled by neural networks, and the powerful GAIL method is used to learn
the parameters of them through a mutual game between the policy function and the reward function.

3 Markov Decision Process Modeling

In this section, we introduce how we model the human movement decision-making processes of
different users as Markov Decision Process (MDPs).

Specifically, we consider each user as an “agent” with a unique reward function. Formally, each
MDP can be represented by a 4-tuple < S, A, P, R >. Specifically, S represents the state space, and
A represents the action space. P : S X A X S — R represents the state transition probability,
That is, P(si+1]si, a;) is the probability distribution of the next state s;;; conditioned on the current
state s; and action g;. Finally, R : S X A — R is the reward function with R(s, a) representing the
immediate reward received by executing the action a € A under the current state s € S. Below,
we introduce how we model the above components of the MDP.

State. The state of each agent is characterized by his/her spatio-temporal locality s = (I, ¢, ¢),
where [ represents the current location of the agent, t represents the timestamp, and ¢ represents
other decision-making features constructed based on users’ historical trajectories.

Action. We consider four actions that agents can take in each time slot including stay, home,
explore, and return, which are described in detail as follows:

— Stay: When the agent anchors at a location to conduct an activity, it is defined as a stay. This
action indicates the agent will stay at the current location in the next time slot.

— Home: The home plays an irreplaceable role in the mobility behavior of users. Thus, we define
a separate action to describe the home-related mobility behavior. Specifically, this action
represents the agent will go home in the next time slot.

— Return: This action represents that the agent chooses to move to a location that has been
previously visited but not his/her home.

— Explore: The action of explore indicates the agent will move to a new location which has not
been previously visited.
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When it comes to model the action space of the decision-making process of human mobility,
XGail [27] and TrajGail [52] focus on fine-grained information-instant orientation of the driver.
DeepMove [9] and MoveSim [10] consider the coarse-grained location-based variation. To build
a more general model that can represent the decision-making process of human mobility, we
present those four actions (Figure 2). Explore and return actions have been proven to be effective
in representing human mobility in past and recent papers [15, 28]. Some researchers present EPR
models for returning action to increase prediction accuracy [4, 30]. As for the home and stay action,
researchers have proven that adding the home action can better characterize the human mobility
[17, 35]. Thus, these four actions are suitable for representing general human mobility actions.

State Transition Probability. This component describes the probability distribution of the next
state conditioned on the current state and action. According to our definition of the state space
S, the next state s;.1 is composed of three parts, i.e., I;, t;, and c;. Specifically, the transition of #;14
is deterministic, and we have ;11 = t; + At. At the same time, c;;1 is determined by the historical
trajectories, which is updated by the conditional variable s;. Thus, ¢, is also deterministic. As for
li+1, when the action a; is stay or home, it is still deterministic with I;;; to be [; or the home place of
the agent, respectively. However, when a; is return or explore, there are a large number of possible
locations to choose from, and thus I;,; is stochastic.

We utilize the classical EPR model to select from the new locations to explore or the previous
locations to return. Specifically, if the agent decides to return to previously visited locations, he
would choose a specific location ! with the following probability distribution:

P(liv1 = l|si, a; = Return) = ki [k, (1)

where k; represents the historical visitation times in place [ of the agent, and k,j; represents the
total visitation times in all places of the agent.

On the other hand, if the individual decides to explore a new location, we choose a rank-based
exploration model. Based on the distances to the current location [;, we have a rank k(, [;) for each
alternative destination /. For example, the location [; closest to the current location [; has k(ly, ;) =1,
and the second closest location I, has k(l,, [;) = 2. Then, we have

P(liy1 = I|s;, a; = Explore) o k(1,1;)™%, ()

where « is the sensitivity for distance. Smaller @ means people are less sensitive to trip distance,
resulting in longer trip distance.

Reward. R(s;, a;) measures the reward that agent receives by executing the action a; under the
state s;. In the IRL framework adopted by our proposed system, the reward function is also known
and need to be learned from the expert user trajectories. Specifically, neural networks are adopted
to model the reward function, which will be introduced in Section 4.

4 GAIL

Based on the above MDP models, the decision-making strategy of the user is described by a policy
function 7 : § — A. Specifically, 7 (als) represents the probability of choosing action a under the
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current state s. All users choose the policy functions that maximize their total obtained rewards.
Since the policy function and the reward function are all unknown in our problem, our goal is to
learn the reward function and policy function from the expert user trajectories.

In order to achieve this goal, we utilize the power GAIL method. Specifically, in GAIL, the policy
function is modeled by a generative neural network, which is utilized to sample user trajectories
and is optimized by maximizing the total obtained reward of the sampled trajectories given the
reward function. On the other hand, the reward function is modeled by the discriminator neural
network, which takes both expert trajectories and sampled trajectories as input and output to what
degree the sampled trajectories imitates the expert trajectories as the reward value. Finally, the
reward function and policy function are joint learned in an adversarial learning manner. Figure 3
summarizes this process.

In the following part of this section, we will introduce the process of utilizing GAIL method
to solve our problem in detail. First, we consider the significant variability of trajectories among
different individuals and seek to extract the internal latent factors of variation, which are referred
to as the decision-making features. Then, based on the extracted decision-making features, we
introduce a self-attention generative network to model the policy function in Section 4.2. Next, we
design a multi-scale reward function composed of an instant discriminator network to reward the
instant state—action pairs and a long-term discriminator network to reward the long-term mobility
patterns in Section 4.3. Finally, we present the jointly learning process of the policy net and the
reward nets in Section 4.4. The whole structure is shown in Appendix A.1.

4.1 Decision-Making Feature Extraction

Different users have different policy functions and reward functions. For example, the home place of
one user might be the workplace of another user. Thus, the rewards that they obtain when visiting
this place are completely different, which also leads to their different policy about this place. Thus,
the spatio-temporal locality of users alone is not enough to determine their obtained reward and
future actions. In order to solve this problem, we seek to extract other important decision-making
features expect for their spatial-temporal locality, which can be summarized as follows:
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Fig. 4. lllustration of the self-attention-based generator network architecture.

— Home Position h;: As defined in Section 3, we take returning home as an important action
in the action space of the MDP. Thus, the home position is also critical information for both
policy functions and reward function. Specifically, the home position is labeled by the most
frequently visited region during the nights (between 10 p.m. of the first day and 5 a.m. of the
second day).

— Staying Time 7;: Users’ staying time at the current location is another important decision-
making feature. It has been found that users’ staying time at different locations follows a
power-law distribution with a cutoff of 17 hours [34]. In our method, we extract the staying
time of users at the current location as a decision-making feature and investigate whether we
can learn its influence to users’ movement behavior through the neural network-based policy
function and reward function.

— #Visited Location m;: It is also found the probability of exploration is correlated to the number
of distinctive locations visited by the user [34]. Thus, we denote this feature as m; and use it
as another decision-making feature.

— Sub-Trajectory of the Past Day Tf: The above features mainly characterize the short-term state
of user mobility. The only long-term state feature is the home position h;. However, only h;
is still not sufficient to characterize the long-term states of user mobility. In order to solve
this problem, we collect the sub-trajectory of the user within the past day as another feature,
which can be represented by T = {(1;,t;)|i — Ng < j < i}.

4.2 Policy Function

As shown in Figure 4, we design a policy network based on the self-attention mechanism [38]
to capture complicated correlations and regularities in the sequential mobility trajectories. The
network generates the decision-making policy 7(als) given the state s. Based on the learned policy,
the network then randomly selects an action (flexible activities that determine the next location).

First, we have to design an encoding structure that converts the original state s to a specific
format that serves as the input for the generator. The main reason for the encoding process is
that the state s usually contains various types of attributes [;, t;, ¢;. Here, ¢; only calculates three
different decision-making features—home position h;, staying time 7;, visited locations m;, as the
sub-trajectory of the past day T has already been processed in the self-attention mechanism. We
encode I, t;, 7;, m; with one-hot vectors and then convert them into embedding vectors based on
the learnable parameters of embedding table W;, W;, W, and W,,,. For the home position h;, we use
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the encoding method same as the [; followed by a ReLU activation layer, which can be represented
as follows:

hi = @(h;) = ReLU(Why), ®)

where h{ is the embedded vectors for home position h;. Then, the raw input s composed of the
current location [;, current time t;, staying time 7;, and the number of visited location m; are first
converted from the one-hot encoded vectors to their corresponding embedding vectors. Then, they
are concatenated together with the embedding of the home position h{ and then jointly mapped
into a low-dimensional embedding vector s°. Note that the embedding weight matrices are shared
among all trajectory points.

Sl-e = tanh([Wlli;thi;WTTi;Wmmi;hf]). (4)

In the generative modeling layer, we use a self-attention-based structure that captures the time-
dependent transitions inside the trajectories. Self-attention mechanism [38] is proven to be efficient
in sequence modeling and has a strong ability to model the long-term correlation and complicated
spatio-temporal dependency of mobility trajectories [9, 21, 43]. We use the scaled dot-product
attention with the input consisting of a query vector, a key vector, and a value vector, represented by
i, ki, and v;, respectively. They are all extracted from the dense vector s® by using three independent
non-linear networks as follows:

[gi; kisvi] = ReLU ([Wosi; Wis; Wys?]). (5)

Further, we denote the matrix composed of query vectors, key vectors, and value vectors as Q;, K;
and V;, respectively. For example, we have K; = [ky, ks, ..., k;]. Then, the attention mechanism can
be represented by the following equation:

T

. (6)

Vd
where d is the dimension of the key vector k;, and y; is the obtained feature vector based on the
self-attention layer. Finally, we use a linear layer with the softmax activation function to process
the feature y; to obtain the probability distribution of each action as the policy.

TK;
yi = [softmax (q’— v

4.3 Reward Function

In the GAIL, the reward function is used to score trajectories by matching the generated state—action
distribution with the expert’s distribution. However, the mobility features of human are complicated
and diverse, simply modeled reward function cannot capture the complex information and will
face the compounding errors and covariate shift [32, 33]. The whole complex spatial-temporal
mobility information can be divided into two different genres—low-level details (instant actions)
and global characters (individual varieties and motivation of movement). To better extract these
features, we process them separately by designing two reward functions presented in Figure 5. An
instant reward function R’ is designed for directly rewarding the action based on the current status,
and the other long-term reward function R is used to distinguish the personality information from
the trajectory and measure the trajectory-level similarity with the expert trajectories. Finally, we
can obtain the multi-scale reward function RM as follows:

RM = Rl + ARE, (7)

where A > 0 is the parameter to balance the influence the instant reward and long-term reward.
Then, we introduce how we compute R’ and R in the following part of this section in detail.
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4.3.1 Instant Reward R'. The instant reward is modeled by an instant discriminator D!, of which
the goal is to measure the reality of the generated actions as human decisions. With the sampled
action a from the generator network and the state s (instant message without the sub-trajectory
of the past day TY) as input, the instant discriminator network outputs the reward signal which
indicates to what degree the generated state—action imitates the real-world expert trajectories.
Specifically, we first apply the same encoding mechanism to map the state-action pair into a
dense vector. Then, the embedding vector will be processed by linear layers with ReLU activation
functions later to extract the low-level features. Finally, the output will be fed into a linear layer
with a sigmoid activation to be transformed into the discriminator output D! (L;, t;, 71, my, a;), and
the instant reward can be expressed as follows:

RI(Sl', al-) = IOgDI(li, ti, Ti, Mj, a,-). (8)

4.3.2 Long-Term Reward RE. While the instance discriminator network D generates learning
signals for the generator by distinguishing the real and generated mobility state—action pairs, it
fails to capture the global information and high-level individual characteristics, which is critical for
high-quality mobility trajectory simulation. For the global information, we evaluate the reality of
the generated trajectory and use a similar adversarial mechanism to make the generated distribution
fit the real distribution in the trajectory level. For the individual characteristics, by considering
the diversity of humans, we introduce the home position h; to disentangle the individual features.
As we have fed home position as one of the decision-making features, the generated trajectory T°¢
comes from our self-attention generator network should contain the information of the individual
feature h. Inspired from InfoGail [19], we would like to increase the mutual information I(T¢; h)
between the generated trajectory of T¢ and home position h. Based on the definition, I (Tl.c; h) can
be calculated as follows:

I(T%;h) = H(h) — H(h|T®) = H(h) + ErcEpjrclogp(h|T). ©)

Without access to the posterior p(h|T¢), we cannot maximize the I(T¢; h) directly. To calculate the
lower bound of I(T¢; h), we introduce q(h|T) to approximate the true posterior p(h|T€).

logp(h|T¢) = logq(hIT®) + log%. (10)
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Further, we have Eprc log% is the KL divergence conditioned on T¢, which is always larger

than 0. Then, we calculate the left part via the reparametrization trick, which can be expressed as
follows:

Li(T h) = /p(h)logq(th”)dh +H(h) < I(T%; h), (11)

where p(h) is the home distribution of the agent. As H(h) is a constant, the maximizing I(Tf; h)
can be converted into maximizing the left term, which is also equivalent to minimizing the KL
divergence Dz (p(h)|q(h|Tf)).

Thus, the output of our long-term discriminator network is designed to have a trajectory-level
discriminator output and a home position estimation. Specifically, we show the structure of our
discriminator in Figure 5. First, we convert the sub-trajectory information T into a 2D feature
matrix X¢ € RNe*Nemb by using an embedding module, where N, is the length of the embedding
vectors. Then, several convolution layers are selected to handle the generated feature matrix. Finally,
we flat the convectional features into a trajectory-level discriminator result for reality D (T¥)
and a location choice for home position q(h|T) by using two additional linear layers. q(h|Tf) is
further used to reward the individual characteristics. Specifically, we calculate by the negative
KL divergence between real home p(h) and estimated home position g(h|Tf) as the reward, i.e.,
D1 (p(W)lIg(HITE)).

Thus, the whole reward function for the long-term discriminator network would be

logD™(Tf) — BDkr(p(W)Iq(hITY)), if i=k-Ng, k€N,
0, otherwise,

R'(si,a;) = { (12)
where f§ > 0 is the parameter to adjust the influence of the reward in terms of the individual
characteristics. Note that in Equation (12), a trajectory with the length of k days obtains non-zero
rewards for exact k times at the end of each day.

4.4 Model Training

As our GeoGail model is based on two different discriminator networks to reward the whole
generation, the standard training algorithm cannot work well for the min-max optimization.
To effectively train our model, we present two different kinds of training mechanisms, i.e., pre-
training mechanism and GAIL training. For the pre-training mechanism, we pre-train the instant
discriminator and generator to accelerate the training procedure and improve the performance of
the whole framework. Then, in the GAIL training, we train our model based on the reinforcement
learning update rule to maximize the total obtained reward.

4.4.1 Pre-Training Mechanism. In order to improve the performance of the whole framework
and accelerate the training procedure, we propose to pre-train the model. We use the negative
log-likelihood loss for the generator network to gain the fine details inside the expert trajectories
by selecting the right actions, which can be expressed as follows:

min — B, [log(z(als))], (13)

where g represents the expert policy. In addition, E, represents the expectation with respect to the
trajectories sampled based on the policy 7. Specifically, for an arbitrary function f : SXA — R, we
have E,[f(s,a)] = E[Zf\il f(si,a;)], where a; ~ 7(+|s;) and s;41 ~ P(:|s;, a;). Thus, E,, represents
the expectation with respect to the expert trajectories.

As for the discriminators, they all need the sampled trajectories from the generator. Thus, we first
sample trajectories based on the current policy 7 and then pre-train them based on the standard
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GAN loss. Specifically, the loss of the pre-training for the instant discriminator can be expressed as
follows:

n})a}x E,[logD(s,a)] + E,[log(1 — D'(s, a))]. (14)

Differently, for the long-term discriminator, since each trajectory only obtains non-zero rewards
at the end of each day, the corresponding discriminator D’ is also trained based on the sub-trajectory
of each day instead of the state—action pair in Equation (14). Thus, we further define EL[f (s, a)]
= E[Zlk\]:/lN ? f(sk-Ny» ak-N,)]- Then, the loss of the pre-training for the long-term discriminator can
be expressed as follows:

max B [logD" (T%)] + By, [log(1 — D*(T))]. (15)

4.4.2 GAIL Training. The pre-training process helps accelerate the training procedure by ob-
taining a policy function by directly matching the state—action distribution (s, a) of the expert
trajectories. However, the obtained policy function cannot guarantee the optimality of the overall
reward and also suffers from exposure bias. Thus, we then train our model based on GAIL.

Specifically, our reward function is calculated by combining the instant discriminator network
D! and long-term discriminator network D!, while the generator attempts to create more real
trajectories by maximizing the total reward. The correctness of the discriminators is governed by
optimizing the adversarial energy as in Equations (14) and (15). Differently from the pre-training
process, the generator (i.e., policy) is optimized based on the reinforcement learning update rule
instead of the negative log-likelihood loss, which can help optimize the total reward and is also not
affected by exposure bias [14]. Specifically, the objective function can be expressed as follows:

min max E,[RM(s,a)] + E,,[log(1 — D'(s, a))]
n DIDL
+ /UE,LTE [log(1 - D*(s,a))] — H(x), (16)

where H () is causal entropy of the policy 7, which can be represented by H(x) = E, [logn(als)].
This term helps to find the more “uncertain” policy and maximize the total reward at the same time.

Overall, the loss of Equation (16) still contains the GAN loss of the discriminators shown in
Equations (14) and (15). Differently, it updates the policy x via PPO update rule based on the reward
RM shown in Equation (7).

5 Experiments
5.1 Experimental Setting

Datasets. We use the GeoLife dataset provided by [54] and Mobile dataset to evaluate the perfor-
mance of our framework. The first one is the widely used mobility dataset, which is collected by
182 volunteers with the GPS-phone for 5 years. The second one is collected from the mobile cellular
network, which records the mobility trajectories of one hundred thousand users via base station
co-localization. With different collection mechanisms, these two datasets record human mobility
with different temporal and spatial resolutions, which guarantees the universality of the evaluation
results. The experiment details are shown in Appendixes A.2, A.3, and A 4.

Baseline Algorithms. We compare our models with the following state-of-the-art mobility trajec-
tory synthesizing methods.

—IO-HMM [48]: This model utilizes a modified Hidden Markov Process, which can incorporate
external information of the sequence data as the context. Then, it generates trajectories based
on the hidden states correlated with home and work.
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— TimeGeo [17]: This model generates the trajectories with the probabilistic model and parame-
ters with explicit physical meanings, including the weekly home-based tour number, dwell
rate, burst rate, and so on.

— DeepMove [9]: This model utilizes the attention mechanism in the standard RNN model to
capture the periodical patterns in mobility trajectories.

— GAN [12]: This model utilizes the GAN model to directly fit the distribution of the real-world
human trajectory data by using a generator network and a discriminator network.

—SeqGAN [49]: This model uses the policy gradient method to train the generative model of
the sequence data, of which the reward signal is obtained based on a GAN discriminator.

— MoveSim [10]: This model is recently proposed to synthesize human trajectories based on
GAN, which introduces prior knowledge and physical regularities to the SeqGAN model.

Specifically, IO-HMM and TimeGeo are representative probabilistic trajectory synthesizing mod-
els, while DeepMove, GAN, SeqGAN, and MoveSim are representative deep learning models, where
MoveSim is a state-of-the-art GAN-based trajectory synthesizing model proposed in recent years.
As for other state-of-the-art methods, Social GAN [1], XGail [27], and TrajGail [52] mainly focus on
microscopic human trajectories, which models the human mobility in terms of speeds, directions,
road link transitions, and so on. Thus, they require trajectory datasets with a small sampling interval,
e.g., from tens of microseconds [1] to tens of seconds [27, 52], while we mainly focus on macroscopic
human trajectories with large sampling interval (e.g., tens of minutes in the Mobile and GeoLife
dataset [54]). Thus, their performance cannot be compared in our experimental scenarios. Overall,
by comparing these selected algorithms covering the most representative probabilistic models and
deep learning models, the performance of our proposed algorithm can be credibly evaluated.

Parameters Settings. In our GeoGail model, we first embed the input before entering the network.
The location embedding size is set as 64, while the time embedding, the staying time embedding,
and the #Visited location is set as 8. As for the home feature, it uses the same embedding net as the
location embedding. Inside the generator, we use the self-attention structure, the inside hidden
vector (Q, K, and V) is set as 64. Finally, a linear followed with softmax activation is chosen as the
output. In the Instant discriminator network D, the structure of D! is three linear layers with ReLU
activation and one linear layer with sigmoid activation. In the long-term discriminator network D,
the numbers of filters are set as {100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160} and filter
sizes are set as {1, 2, 3,4, 5, 6,7, 8,9, 10, 15, 20}. All the parameters are initialized with a uniform
distribution [—0.05, 0.05]. The learning rate is set as 0.0003 for the pre-train process and 0.00003 for
the training. Generator, instant discriminator network, and long-term discriminator network have
the same learning rate. The hyper-parameter A between Instant reward R’ and Long-term reward
RL is set as 0.1 throughout our experiment

5.2 Quantitative Results

Inspired by the common practice in previous works [10, 17, 26], we choose six different metrics to
evaluate the quality of generated data in terms of its usability compared with real-world expert
trajectories, which are defined as follows:

— Distance: The cumulative travel distance of different users in the fixed time interval At.

—Radius: Radius of gyration (r,) [11]. It represents the spatial range of users’ daily movement.

— Duration: The stay duration of users at different visited locations.

— DailyLoc: The number of visited locations per day for each user.

— Rank: The visiting frequency of top-100 locations for each user.

— Exploration: The probability to visit a new location as a function of the number of visited
locations.
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Table 1. Performance of Different Algorithms in Terms of Key Usability Metrics on the Two Datasets

Dataset Mobile Dataset GeolLife Dataset
Metrics (JSD) | Distance | Radius | Duration | DailyLoc | I-Rank | Exploration | Distance | Radius | Duration | DailyLoc | I-Rank | Exploration

10-HMM 0.0473 0.4116 0.2390 0.1130 0.1682 0.2145 0.1389 0.3953 0.3024 0.4792 0.3734 0.3514
TimeGeo 0.1036 0.4492 0.3006 0.5922 0.2041 0.2207 0.1674 0.3522 0.3536 0.5652 0.3855 0.3350
DeepMove 0.1152 0.4512 0.3743 0.3375 0.3929 0.4042 0.2149 0.4316 0.2654 0.3025 0.3526 0.5329
GAN 0.6283 0.6829 0.2123 0.6214 0.2132 0.7023 0.2432 0.7039 0.4357 0.6841 0.4294 0.7992
SeqGAN 0.5072 0.6603 0.1131 0.6931 0.2378 0.8361 0.1704 0.6682 0.1436 0.6931 0.3289 0.8371
MoveSim 0.0145 0.0806 0.0041 0.0844 0.0816 0.2121 0.0686 0.2912 0.0330 0.6758 0.0106 0.0708
Ours 0.0113 | 0.0116 | 0.0035 0.0360 | 0.0054 0.0573 0.0035 | 0.0055 | 0.0270 0.0410 | 0.0095 0.0302

All metrics are evaluated based on JSD with lower values indicating better performance. In addition, the best result and the second-best result of each metric are
marked with bold and underline, respectively.

All the above metrics are characterized by probability distributions with each trajectory or each
mobility record as one sample. In order to quantify these metrics, we utilize the JSD, which is a
distance defined between probability distributions. Specifically, for arbitrary probability distribution
p and g, the JSD between them is represented by the following equation:

JSD(p;q) = h((p+9)/2) = (h(p) + h(9))/2,

where h(-) is the Shannon’s entropy, and a smaller JSD indicates a larger similarity between p
and q.

As shown in Table 1, our approach achieves the lowest JSD in all the models, with MoveSim
to be the second best performing approach. IO-HMM achieves the third-lowest JSD, suggesting
that the feature of the home position is useful in trajectory synthesizing. As a probability-based
model with explicit physical meaning, TimeGeo performs better than the neural network models
including SeqGAN and GAN. Using the reinforcement learning method allows SeqGAN to follow
closely behind. GAN produces worse results than TimeGeo, suggesting that roughly adopting the
GANSs cannot capture the complex spatial-temporal features inside the mobility trajectories.

5.3 Interpretable IL

Based on the semantic level, our proposed GeoGail significantly improves the interpretability
compared with existing neural network models by extracting the knowledge contained in the
mobility trajectories. To interpret what knowledge the model has learned, we have conducted
several experiments in terms of three statistical features and three statistical relationships.

When facing human mobility, statistic models usually define a number of parameters with explicit
physical meanings and then generate mobility trajectories based on these parameters. Inspired by
them, we first evaluate whether these parameters with explicit physical meanings are well-learned
based on our proposed model. Specifically, TimeGeo defines the following physical parameters:

—N,,: The weekly home-based tour number, which represents the travel likelihood when a
person is at home.

— f1: Burst rate, which measures how much more active (or likely to travel) the person is at
another place compared with home. Specifically, N,,; represents the travel likelihood when
a person is out of the home.

— fo: Dwell rate, which measures the activity for the person to do consecutive activities out of
home. Specifically, N,, f; is the likelihood of performing consecutive out-of-home activities.

In TimeGeo, the probability of the next action is modeled based on a simplified assumption,
i.e.,, a multinomial distribution with the parameters related to N,,, f;, and f, to preserve corre-
sponding characteristics. However, human trajectories are much more complicated, and in our
proposed model, it is modeled by a non-linear neural network with much stronger modeling ability.
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Table 2. Comparison of Interpretable Statistical Features

Dataset Mobile Dataset GeolLife Dataset

Parms Nw ﬁl ﬁz NW ,Bl ﬂz
real 16.703 | 3.540 2.639 | 5.191 | 7.338 | 6.343
MoveSim | 3.207 | 20.525 | 20.092 | 3.461 | 11.098 | 9.485
Ours 15.417 | 3.265 2.337 | 5549 | 6.052 | 5.344
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Fig. 6. Probability to visit a new location.

To interpret the effectiveness of our model, we would like to observe that our GeoGail can capture
those physical parameters from expert trajectories in an unsupervised way, of which the results
are shown in Table 2.

As we can observe in Table 2, MoveSim cannot capture these parameters. Specifically, MoveSim
shows less sensitivity to the variety of datasets. That is, N,, of trajectories generated by MoveSim
is almost unchanged in the two datasets, while a clear difference exists in the two real-world
datasets. The reason is that MoveSim does not model the inherent decision-making process of
human mobility, leading to its weakness in terms of modeling these physical parameters. Our
proposed model shows a pleasing result compared with MoveSim. Specifically, our generated
results show more sensitivity to those parameters, which fit the real data perfectly. Note that in
our model, these parameters are not modeled in a supervised way, indicating our proposed model
can learn these knowledge automatically.

As mentioned in Section 4.1, then we investigate whether we can learn the statistical relationships
of decision-making features and users’ movement behavior. Specifically, we show the statistical
relationships between the probability to visit a new location P, and the number of visited
locations m in Figure 6, and the probability density function of the staying time P(At) in Figure 7.
From Figure 6, we can observe that both MoveSim and our model can fit well at the beginning, but
when it comes to the tail distribution, MoveSim performs much worse. Similarly, in Figure 7, we can
observe that our proposed model outperforms MoveSim. More results are shown in Appendix A.5.

5.4 Mobility Prediction with Augmented Datasets

In order to evaluate whether trajectories synthesized by our proposed model can effectively support
practical applications, we select a representative application based on trajectory data, i.e., mobility
prediction, to testify the utility of our proposed model. Specifically, in our experiment, we utilize
a standard Long Short-Term Memory (LSTM) network to predict users’ further movements
based on their historical trajectories. We consider the scenario where only a limited number of
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Fig. 8. Mobility prediction based on synthetic trajectories.

real-world human trajectories are available due to the collection cost or privacy concerns. Then, the
synthesized trajectories are used to augment the trajectory data as the training samples to train the
mobility prediction model. Finally, we evaluate the performance of the mobility prediction model
on real-world trajectories to show whether the synthesized trajectory can effectively support the
mobility prediction task. Specifically, we compare the prediction accuracy of the model trained on
the augmented dataset compared with that only trained on the real-world trajectories, and we also
vary the number of available real-world trajectories to have a more comprehensive evaluation, of
which the results are shown in Figure 8. As we can observe, the mobility prediction model trained
on the augmented dataset significantly outperforms that only trained on real-world trajectories,
especially when the number of real trajectories is small (e.g., 100 trajectories), which proves the
usability of the synthesized trajectories.

5.5 Ablation Study

We conduct a series of ablation experiments to demonstrate that our proposed components in
GeoGail are indeed crucial for learning an effective policy. In our ablation experiments, we selectively
remove some of the proposed components. Our includes all the components; Ours-SA replaces
the self-attention network with a pure linear layers; Ours-Pretrain removes the pre-training
mechanism. Table 3 shows their average JSD. We can observe that our proposed method performs
the best with the help of the extracted decision-making features; the policy without the long-term
discriminator network performs slightly worse. In addition, removing the pre-training mechanism
will significantly increase the JSD, indicating the importance of the pre-training mechanism.
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Table 3. The Ablation Study of Our Proposed Framework on Two Mobility Datasets

Dataset Mobile Dataset GeolLife Dataset

Metrics (JSD) | Distance | Radius | Duration | DailyLoc | I-Rank | Exploration | Distance | Radius | Duration | DailyLoc | I-Rank | Exploration
Ours 0.0113 | 0.0116 | 0.0035 0.0360 | 0.0054 0.0573 0.0035 | 0.0055 | 0.0270 0.0410 | 0.0095 0.0302
Ours-SA 0.0178 0.0248 0.0235 0.0364 0.0070 0.0619 0.0040 | 0.1024 0.0560 0.1982 0.0111 0.0570
Ours-Pretrain | 0.0185 0.1179 0.1191 0.6931 0.5158 0.2688 0.0310 | 0.3001 0.1063 0.5001 0.0142 0.2203

Bold denotes the best (lowest) results.
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Fig. 9. Individual trajectory of one day, above with the time bar, where the time slices with different colors
represent staying at different locations.

(a) Real (b) Our (0.027) (c) MoveSim (0.187) (d) SeqGAN (0 059)

Fig. 10. Heat map of population density at 2 a.m., with the JSD compared with the real distribution in the
brackets.

5.6 Qualitative Results

First, we show the visualization of a single trajectory in Figure 9. We can observe that SeqGAN fails
to figure out the spatio-temporal information from the training data. Specifically, the generated
trajectory is disorderly and complicated. MoveSim produces better results with higher regularity.
However, we can still observe that the trajectory synthesized by MoveSim will go to a series of
different locations at night, rather than staying at one place (i.e., his home) as the expert trajectory
and the trajectory synthesized by our proposed model. Overall, compared with baselines, our
proposed model can well capture the mobility behavior of users in terms of their sleep schedule.

Then, We show the heat map of population density at 2 a.m. of the Mobile dataset and trajectories
synthesized by different models in Figure 10, where the JSD is calculated by comparing with the
real-world population density. We choose the time of 2 a.m. since at this time users are supposed to
stay at home for sleeping. As shown in Figure 10, we have the smallest JSD among all models. The
GAN-based approaches, including MoveSim and SeqGAN, do not well capture the sleep schedule
of users, leading to their underperformance.

6 Related Work

Human Trajectory Synthesizing. Due to the vital role of human mobility trajectory synthesizing in the
network performance simulation [13], urban planning [23], and so on, the trajectory synthesizing
model has been widely studied. Early methods model the human mobility process based on statistic
models or probabilistic models [6, 16, 17, 29, 48, 53]. However, these models rely on simplified
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assumptions of human mobility behaviors, leading to their weakness in modeling the complicated
relation between multi-dimensional spatio-temporal trajectories. The rise of the deep learning
paradigm provides promising solutions to this problem. In the early attempts, existing approaches
utilize the standard RNN to model and synthesize human trajectories in an autoregressive manner
[20, 37]. However, these models suffer from exposure bias when generating long-term human
trajectories. Simultaneously, GAN has been exploited with significant success in natural image
generation, generating natural language, and so on. Existing studies have used GAN [47] to
synthesize human trajectories. And researchers have further exploration in CNN [10, 26, 36] and
RNN [18, 22]. However, these GAN-based methods are designed to directly learn the data distribution
from demonstrations without modeling the hidden decision-making process. Different from them,
our proposed method aims to synthesize trajectories by modeling the hidden decision-making
process of human mobility based on IL techniques, which can capture the hidden semantics and
inherent stochasticity of human movement. Furthermore, our proposed method can automatically
learn explainable knowledge from data, e.g., statistical relation between semantic actions and
decision-making features.

IL. IL techniques are designed for learning the policy function of the agent, which maps the
current states to the actions to be implemented, from the given demonstrations. Early methods
solve this problem by directly copying the behavior of the demonstrations based on standard
supervised learning methods [3], which perform poorly on unseen situations and thus suffer from
variations in the tasks. IRL is then proposed to solve this problem by recovering the agent’s reward
function based on demonstrations and trains the policy function by maximizing the total reward
at the same time. A number of IRL methods are proposed based on the linear reward function of
manually extracted features [7, 55, 56]. Recently, GAIL is proposed to utilize non-linear neural
network-based reward function and policy function, which has shown great success in solving the
IL problem. A large number of IL-based applications have also been proposed, including dynamic
treatment regimes [41], traffic signal control [46], and explanationable analysis for the humans’
behavior [25, 27, 42, 51, 52], and so on. Different from them, our article mainly focuses on the
human trajectory synthesizing problem. Furthermore, different from the traditional action space
based on the speed and direction in existing methods, we propose a semantic level in our system
to model the movement behavior to diverse locations in the semantic domain, which can capture
the more essential decision-making purpose of users and process diverse locations in a uniform
manner.

7 Conclusion

In this article, we present GeoGail, an IL-based method to synthesize human trajectories with explic-
itly modeling the decision-making process combined with the semantics of the mobility behavior.
In addition, we propose a self-attention-based policy net with elaborately selected decision-making
features and a multi-scale reward net with the instant reward, trajectory-level reward, and mutual
information-based reward in terms of individual characteristics. Extensive experimental results
show that our proposed method significantly outperforms state-of-the-art methods. Furthermore,
important explainable knowledge is automatically learned from the data, including the weekly
home-based tour number, dwell rate, burst rate, probability density function of the stay duration,
and statistical relation between the exploration probability and the number of visited locations,
demonstrating the benefits of modeling the underlying decision-making process of human mobility.
As future work, we will consider more complicated action places and state transition models by
incorporating fine-grained semantics-based actions and individual characteristics, e.g., personalized
sensitivity for distance.
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Appendix

A
A1
The

Appendix for Reproducibility
Pseudo-Code of GeoGail

whole training procedure of our GeoGail can be summarized in the following Algorithm A1.

As we can observe, this algorithm starts by randomly initializing weight of 7, D!, and DL. Then,
it iteratively sample the home position for the agent and generate the corresponding synthetic
trajectory. By sampling expert trajectories with the same size, this algorithm first update D! and
DF based on Equation (16) and then update 7 via PPO update rule based on the reward RM shown
in Equation (7).

Algorithm A1: GeoGAIL

Input: Expert trajectories Tg~7ng.

1: Initialize 7, D!, DFwith random weights;

2. Pre-train 7, D!, DX based on Equations (13)—(15), respectively;

3: for i=0,1,2... do

4. Sample a batch of home positions h;~p(h) for the agents;

5. Sample a batch of trajectories T;~7 (h;);

6:  Sample expert trajectories Tg~mp with same batch size;

7. Update D! and D* based on Equation (16);

8 Update 7 via PPO update rule with the reward RM in Equation (7);
9: end for

A2

Detail for Processing Our Data

A.2.1 Data Selection.

— Mobile dataset was collected in Shanghai by using a major mobile network operator. It records

the anonymous user ID, accessed base station, and timestamp of each accessing.
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Table A1. Statistic Information of Two Mobility Datasets

Datasets Mobile Dataset GeolLife Dataset
Duration 1 April to 7 April 2016 | April 2007 to August 2012
#Users 100,000 182
#Records/user 261 453
#Locations 9,000 base stations GPS coordinates
® real data * ® realdata
10-1 9 o8 - —— fit curve alpha=-1.13 10-1 9 . fit curve alpha=-0.63
."-..,. 1073 ..'.....
105 e i
10° 10? 104 100 102 104

Rank of destination, k Rank of destination, k

(a) Mobile dataset. (b) Geolife dataset.

Fig. A1. Empirical probability.

— GeoLife dataset was collected in (Microsoft Research Asia) Geolife project by 178 users in a
period of over 4 years (from April 2007 to October 2011). A GPS trajectory of this dataset is
represented by a sequence of time-stamped points, each of which contains the information of
latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance
of 1,251,654 kilometers and a total duration of 48,203 hours. we project GPS coordinates into
the grids by containing up to three digits after the decimal point.

A.2.2  Home Position Selection. Home position is crucial in our GeoGail model. To extract the
home position in each dataset, we label the most frequently visited stay-region during the nights
(between 7 p.m. of the first day and 8 a.m. of the second day) as the home stay-region.

A.2.3  Alpha Selection. When facing the explore action, the exploring location is connected with
P(li41 = l|sj, a; = Explore) o k(1,1;)~%. For an individual to select an exploration destination, we
measure P(l;4; = l|s;, a; = Explore) aggregating all users’ destinations. The empirical probability
of choosing the rank k location as a trip destination in each data can be calculated in Figure Al.

A.3 Network Architecture of GeoGail

In our GeoGail model, we first embed the input before entering the network. The location embedding
size is set as 64, while the time embedding, the staying time embedding, and the #Visited location
is set as 8. As for the home feature, it uses the same embedding net as the location embedding.
Inside the generator, we use the self-attention structure, the inside hidden vector (Q, K, and V)
is set as 64. Finally, a linear followed with softmax activation chose as the output. In the instant
discriminator network D', the structure of D! is three linear layers with ReLU activation and one
linear layer with sigmoid activation. In the long-term discriminator network D¥, the numbers of
filters are set as {100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160} and filter sizes are set as
{1,2,3,4,5,6,7,8,9, 10, 15, 20}. All the parameters are initialized with the uniform distribution

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 1, Article 20. Publication date: December 2024.



20:22 Y. Wu et al.

Fig. A2. The comparison between mobility patterns in generated trajectory data (our framework and MoveSim)
and real trajectory from Geolife dataset.
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Fig. A3. The comparison between mobility patterns in generated trajectory data (our framework and MoveSim)
and real trajectory from Mobile dataset, where P denotes the probability distribution.

[—0.05, 0.05]. The learning rate is set as 0.0003 for the pre-train process and 0.00003 for the training.
Generator, instant discriminator network, and long-term discriminator network have the same
learning rate. The hyper-parameter A between Instant reward R! and Long-term reward R is set as
0.1 throughout our experiment

A.4 Parameters of Baselines

— IO-HMM: We label the most frequently visited stay-region during the nights (between 7 p.m.
of the first day and 8 a.m. of the second day) as the home place. For activity labels, we obey
the rules in the original article. We use fully unsupervised IO-HMM as a generative model
during the sequence generations

— TimeGeo: The home place was selected in the same way as the [O-HMM. The weekly home-
based tour number set as 16.7 for Mobile dataset and 5.2 for GeoLife dataset. Burst rate is 3.5
for Mobile and 7.3 for GeoLife dataset. Dwell rate is 2.6 for Mobile and 6.3 for GeoLife dataset.

— DeepMove: First, based on the population density, we choose a start point to predict its next
trajectory point. Then combining input and output into a new trajectory and predict the next
point. Repeat this process until complete the whole reproducing.

— GAN: We normalize the original GPS coordinates of location into [0,1] X [0,1] two sequences
and feed them into the network. LSTM is chosen inside the generator, where the hidden size
is set as 64. We build the discriminator the same as our long-term discriminator network. The
learning rate is set as 0.001 for both the generator and discriminator.

—SeqGAN: We use LSTM in the generator where the embedding size for one-hot location is 32
and the hidden size is 64. We build the discriminator the same as our long-term discriminator
network. The learning rate is set as 0.001 for both generator and discriminator.

— MoveSim: The location embedding size is set as 64, while the time embedding is set as 16.
We build the discriminator the same as our long-term discriminator network. The learning
rate is set as 0.001 for both the generator and discriminator. The default weight of mobility
regularity-aware loss is set as 1.0.

A.5 Extension of Table 1: Mobility Pattern Distribution Comparision

As the extension of Table 1, we compare the distribution of our framework, the best baseline
(MoveSim), and real data directly on these metrics in Figures A2 and A3. Presented in the mobility
pattern probability distribution of GeoLife dataset in Figure A2, we can find that the distribution of
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our framework (red line) has a better result than the real data (green line) distribution, which is
much closer to the real data. Besides, we also compare in Figure A3. By comparing with the best
baseline MoveSim (green line), the mobility regularity distribution of our framework (red line) has
a better result than the real data of the Mobile dataset (blue line) on all the metrics.
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