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Abstract—Synthesized human trajectories are instrumental for a
large number of applications. However, existing trajectory synthe-
sizing models are limited in either modeling variable-length tra-
jectories with continuous temporal distribution or incorporating
multi-dimensional context information. In this paper, we propose a
novel probabilistic model based on the variational temporal point
process to synthesize human trajectories. This model combines
the classical temporal point process with the novel neural varia-
tional inference framework, leading to its strong ability to model
human trajectories with continuous temporal distribution, vari-
able length, and multi-dimensional context information. Extensive
experimental results on two real-world trajectory datasets show
that our proposed model can synthesize trajectories most similar to
real-world human trajectories compared with four representative
baseline algorithms in terms of a number of usability metrics,
demonstrating its effectiveness.

Index Terms—Generative models, mobility trajectory, temporal
point process, variational auto-encoder.

1. INTRODUCTION

UMAN trajectory synthesizing models are crucial for
many applications. For example, in mobile ad hoc net-
works or cellular networks, based on synthesized trajectories, we
can simulate the detailed process of movement and communica-
tion of network users to have a reliable performance analysis of
the network [1]. Similarly, we can simulate the traffic congestion
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based on synthesized trajectories, which are also instrumental
for urban planning [2].

Existing trajectory synthesizing methods can be divided into
two categories, i.e., model-based methods and data-based meth-
ods. Model-based methods usually make strong assumptions
about human movement behavior, leading to their weakness
in incorporating multi-dimensional external factors that may
influence the decision-making process of human mobility. For
example, the TimeGeo model [3] assumes users’ mobility states
only depend on whether they are at home. Users’ future move-
ments are further assumed to be determined by their current
states, the current time, and the number of visited locations.
Other factors (e.g., more fine-grained semantic location context)
are ignored and hard to be considered under the assumptions of
this model.

On the other hand, data-based models adopt powerful deep
learning techniques to model users’ mobility behavior. Giving up
building mobility models with explicit physical meaning, these
methods seek to directly learn from data to achieve better perfor-
mance. However, the data-irregular nature of human trajectories
causes big challenges for them. For example, the waiting time
of users at each location is distributed in a continuous space,
with the range from tens of minutes to tens of hours. In addition,
the number of location records of different trajectories is also
diverse for different users. Most existing deep learning based
trajectory synthesizing methods adopt Generative Adversarial
Networks (GAN), of which the discriminator requires inputs
with discrete temporal distribution and fixed lengths. In order to
solve this problem, existing studies compromise to preprocess
human trajectories by discretizing the timestamp and cutting the
whole trajectories into many fixed-length sub-trajectories [4],
[5], leading to their disadvantage in terms of modeling the
fine-grained behavior and long-term correlation of the human
mobility.

In order to overcome the limitations of existing methods, we
propose anovel probabilistic model based on the variational tem-
poral point process to synthesize human trajectories. This model
combines the classical temporal point process with the deep
neural network based on the novel variational inference frame-
work, where the temporal point process is utilized as the bridge
between uninterpretable neurons in the neural network and real-
world human trajectories. Specifically, in our proposed model,
human trajectories are generated from probabilistic distributions
with explicit physical meaning, whose parameters are the output
of the neural network. In this way, our proposed model retains
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the strong interpretability of the classical temporal point process
model. In addition, various context information is considered in
calculating these parameters. Specifically, in terms of the spatial
context, semantic information of the visited location is consid-
ered by incorporating their point of interests (Pol) distribution. In
terms of the temporal context, the joint impact of the visiting time
and waiting time on the mobility behavior is considered. Finally,
the variational inference framework is utilized for training the
proposed model, which defines a loss function by comparing
the probability distribution of the latent codes describing users’
decision tendencies in the future movements obtained from
the generated trajectories and the real trajectories. Thus, our
proposed model does not require fixed-length trajectories with
discrete timestamps as in the GAN-based methods, leading to its
strong ability to model the fine-grained behavior and long-term
correlation of human mobility. In summary, our paper makes the
following contributions:
® We propose a trajectory synthesizing framework based on
the variational temporal point process, which combines
the advantages of model-based methods and data-based
methods. Specifically, it inherits the strong interpretability
of model-based methods and also takes full advantage of
the data-based deep neural network to directly learn from
data.
® We propose a novel interaction mechanism between our
proposed model and trajectory data combining classical
probabilistic distributions in the temporal point process and
powerful encoding techniques in neural networks. Specif-
ically, we propose a Fourier-based positional encoder to
extract fine-grained temporal information in the continu-
ous domain. The spatial distribution is also modeled in
a multi-view manner by incorporating semantic location
context.
® We conduct extensive experiments on four real-world
mobility datasets. Results show that compared with five
representative baseline algorithms, our model is able to
synthesize trajectories most similar to real trajectories in
terms of a number of key usability metrics. Specifically,
the difference measured by JSD is reduced by 56.5% on
average.

II. PRELIMINARIES AND PROBLEM OVERVIEW

In this section, we first define the notations used in this paper.
Then, based on these notations, we present an overview of the
trajectory synthesizing system and formally define the trajectory
synthesizing problem.

A. Mathematical Setup

We define U as the set of all users. The trajectory of each user
is defined by a set of mobility records R". Each mobility record
is defined as a three-tuple r{* = (¢¥, 1%, 7*), indicating user u
visits the location [} at time ¢} and stay there for the time of 7,*.
Further, we define V,, as the number of mobility records of user
u. Thus, we have R = {r{,...,r} }.

Specifically, the visiting time ¢;* and waiting time 7;* are all
defined on real positive number space. In terms of the location
[, in order to prevent the leakage of sensitive information
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TABLE I
LIST OF COMMONLY USED NOTATIONS
Notation | Description
u The set of all users.
L The set of geographical regions.
C The set of Pol categories.
I;(c) The number of Pols of category ¢ € C at
region [ € L.
I The global Pol matrix with size |C| x |L|.
T The -th records for user w.
13 The timestamp of 77"
i The location of 7'
T The waiting time of r}'.
z Latent code describing the decision tendency
of user u corresponding to 7’
R The trajectories of user .
N The number of records for user u.
0 The set of parameters for the generation
process of our proposed model.
10} The set of parameters for the inference pro-
cess of our proposed model.
T The time span of synthesized trajectories.

of users and process the trajectory data and external datasets
(e.g., semantic information of locations) in a cohesive manner,
locations are divided into geographic regions. We further define
L as the set of all regions. For each region [ € L, its semantic
information is characterized by the point of interests (Pols)
located in this region. Specifically, a Pol represents a location
point with a certain function such as a restaurant or a shopping
mall. We define C as all the Pol categories (functions). Then, the
semantic information of [ is characterized by a |C|-sized vector
I;, where each element I;(c) represents the number of Pols of
category ¢ € C located in the region [.

For readability, we summarize the major notations used
throughout the paper in Table I.

B. Problem Definition

Based on the above mathematical setup, the trajectory synthe-
sizing problem investigated in this paper can be formally defined
as follows.

Trajectory Synthesizing Problem

Given: The trajectories R" of user v € U, and the Pol distri-
bution I;(c) of all regions | € L.

Problem: Synthesizing new trajectories that are different from
the original trajectories and preserve the original trajectory
dataset’s usability, which indicates that the synthesized trajec-
tories should statistically resemble the original trajectories.

The trajectory synthesizing problem has a number of unique
characteristics and challenges compared with modeling com-
mon sequence data. Specifically, the waiting time or staying
time of users at different locations is an important aspect of
human trajectories, which common sequence data do not have. In
addition, there are hidden semantics behind the locations visited
by users. For example, the urban function of the locations is
able to characterize the intention of users to a large extent. On
the other hand, most existing trajectory modeling approaches
are based on deterministic models (e.g., standard RNN). That
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is, given a fixed input, the output is the same every time we
run the network. Thus, these approaches fail to capture the
uncertainty of the mobility behavior [6], [7], [8]. Overall, in order
to overcome these unique challenges of trajectory modeling and
synthesizing, we propose a novel probabilistic model based on
the variational temporal point process. This model combines the
classical temporal point process with the deep neural network
based on the novel variational inference framework, where
the temporal point process is utilized as the bridge between
uninterpretable neurons in the neural network and real-world
human trajectories. Before introducing our proposed model in
detail, we first present the necessary preliminary knowledge
about the variational auto-encoder and temporal point process
in the following part of this section.

C. Variational Auto-Encoder

Auto-Encoder (AE) refers to a category of unsupervised
deep learning methods that are used to find the corresponding
embedding vector z of the given target object = (e.g., images,
goods) to efficiently characterize their features. AE methods
are mainly composed of two components, namely encoder and
decoder. The encoder is used to map the target object x into the
embedding vector z, while the decoder is used to reconstruct the
target object based on the embedding vector z. By denoting
the reconstructed object as 2/, the neural network of AE is
learned by minimizing the reconstruction error between x and
2'. However, AE methods are limited in two aspects. First,
these methods cannot be applied to format-irregular datasets,
e.g., the trajectory datasets. Specifically, the number of mobility
records is diverse for different trajectories. Thus, it is not easy to
define a reasonable “reconstruction error” between trajectories.
Second, most AE methods are deterministic models. The lack
of randomness indicates these methods are not suitable for the
trajectory synthesizing tasks.

As a variant of AE methods, Variational Auto-Encoder (VAE)
overcomes these limitations by combining the neural network
with the Bayesian probabilistic framework through variational
inference techniques. First, the encoder and decoder in VAE are
all defined in the form of probabilistic distributions described
by neural networks. Specifically, we denote them as g (z|x) and
po(x|2), where 0 and ¢ are their corresponding parameters, i.e.,
neural network weights. In addition, a prior distribution py(z)
is introduced to the latent code z. In this way, randomness is
introduced to the model, which is able to solve the deterministic
limitation of the AE models. Second, VAE is not trained by
minimizing the reconstruction error. Instead, it minimizes the
distance between the distributions of the latent code z obtained
based on the encoder and the decoder, which is expressed by
KL(gy(z|2)||pe(2]x)). Specifically, g4(z|x) has already been
modeled by the encoder network. As for py(z|z), based on
the Bayes formula, we have py(z|z) = po(x|2)pe(2)/po().
Further, we can derive the following equation:

KL (g4 (2|7)[|pe (2]2))

po(z]2)po(2)

d 1
win) W

— logpo (@) + / 4o (2] log
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where KL is the Kullback-Leibler divergence, which is larger
than 0. As we can observe, logpy(x) does not change with the
neural network weights. Thus, we can convert the optimization
target of minimizing KL (g4 (2|2)||pe(#|x)) to maximizing the
second term on the right hand of (1). Specifically, we denote it
as L£(6, ¢), which also can be represented as follows:

L(0,9) = Eq, (=) [logpo(z|2)] — K L(gy(2]2)|[pe(2)). (2)

Then, we can optimize the VAE model by maximizing L.
Further, a reparameterization trick is proposed to update the
neural network weights [9] to sample from the probability
distributions and optimize parameters ¢ and ¢ in the process
of maximizing L. In this way, the reconstruction error is not
required anymore. Thus, the VAE method has a stronger ability
to model the format-irregular trajectory data with variable length
and continuous temporal distribution.

D. Temporal Point Process

The temporal point process is a category of stochastic pro-
cesses that are utilized to describe time-tagged sequential data
points with different types [10]. Two well-known temporal point
processes are the Poisson process and Hawkes process [11].

In the temporal point process, the intensity function A(t)
is utilized to describe the probability density of a data point
occurring around time ¢. Specifically, in the Poisson process, the
inter-point time gap follows the exponential distribution with a
constant parameter Ao, of which the intensity function can be
expressed as follows:

A(t) = Ao 3)

Differently, in the Hawkes process an occurred data point will
influence the intensity function of future data points, which can
be expressed as follows:

M) =po+ Y a-(t—t), )

t; <t

where ¢; is the happening time of the past data points before ¢,
and p is the basic intensity. ¢ is a kernel function that describes
the impact of the occurred data points on the current value of
the intensity function.

In general, the intensity function of the temporal point process
at time ¢ is only affected by the past data points due to the law of
causality. Thus, we denote it as A(t|z1.,_1) for t € [t,_1,00),
where x1.,_1 represents the past n — 1 data points. Then, the
probability distribution function of ¢,, can be expressed as fol-
lows:

tn

p(tn|l’1:n71) - )"(tn|$1:n71)67 ft”’l A(t‘wlmil)dﬂ (5)
The Poisson process and Hawkes process are all special cases
of it with different intensity functions as shown in (3) and (4).
However, it is not easy to obtain an accurate expression of the
intensity function. For example, in Hawkes process, ¢ is usually
set to be an exponential decay function as ¢(t — t;) = e,
However, whether the intensity functions of these forms can well
fit the real sequential data cannot be guaranteed. In addition, the
complicated impact of the multiple categories of data points
on the intensity function further exacerbates the difficulties in
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Framework of the proposed variational trajectory synthesizing model.

Fig. 1.

accurately modeling them. Instead, in the trajectory synthesiz-
ing problem, we introduce the powerful deep recurrent neural
networks to estimate the intensity function, which has been
proven to have a strong modeling ability in a number of practical
applications [12], [13], [14], [15], [16], [17], [18], [19].

III. TRAJECTORY SYNTHESIZING MODEL BASED ON
VARIATIONAL TEMPORAL POINT PROCESS

In order to overcome the limitation of existing trajectory
synthesizing methods in terms of variable-length trajectory
with continuous temporal distribution and incorporating multi-
dimensional context information, we propose a probabilistic
model based on the variational temporal point process. This
model combines the classical temporal point process with the
deep neural network, which inherits the strong ability of the
temporal point process to model continuous temporal distribu-
tion and also takes full advantage of the strong modeling ability
of the deep neural network.

We show the framework of our proposed variational trajectory
synthesizing model in Fig. 1. As we can observe, our proposed
trajectory synthesizing model can be divided into two parts, i.e.,
generation and inference, with the latent code z; as the bridge
between them, which encodes the stochastic decision-making
features of users. For example, after work, a commuter may
go home immediately, or go to a bar with a certain probability.
We aim to encode his/her decision tendency in the latent code
z;, which is able to model the randomness of human mobility.
Then, the inference module describes the process of estimating
the probability distribution of z; based on historical mobility
records 71.;, while the generation module describes the process
of synthesizing new mobility records given historical latent
codes z1.; and historical mobility records r1.;_1.

Specifically, two separate Long Short Term Memory (LSTM)
networks are utilized to model the sequence of users’ mobility
records and latent codes in two parts, respectively. Further, we
elaborately design embedding and encoding mechanisms in the
inference module of our model to extract sufficient information
from the mobility records in terms of spatial, temporal, and
semantic dimensions to learn the latent code z;. Specifically,
we propose a novel Fourier-based positional encoder to extract
fine-grained temporal information in the continuous domain.
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Then, in the generation module of our model, based on the
concept of the temporal point process, we design a probability-
based generation process to synthesize mobility trajectories with
explicit physical meaning in a multi-view manner. Overall, by
combining the neural networks and the temporal point process,
our proposed method is able to incorporate multi-dimensional
information and synthesize trajectories with continuous tempo-
ral distribution and arbitrary trajectory length, which overcomes
the limitations of existing model-based and data-based methods.

In the following part of this section, we will introduce the
generation and inference process of our proposed model, re-
spectively. Then, we introduce how to learn parameters in our
model. Note that our model is designed to synthesize several
continuous trajectories with arbitrary length or stop conditions
for one given user each time. In addition, different users share
the same neural network weight in our model. For the sake of
simplicity, we omit the superscript « in this section.

A. Inference

The goal of the inference process is to obtain the probabil-
ity distribution of latent codes z; based on historical mobil-
ity records r1.;. That is, learning an approximate distribution
q(z;|r1.;) to estimate the posterior distribution of z; directly
based on observed mobility record ry.;. For the sake of sim-
plicity, we denote the set of all neural network parameters in the
inference module as ¢.

In order to extract sufficient information from ry.;, the user
ID u, waiting time 7, visiting time ¢;, visited location [;, and the
Pol distribution I; are all considered. First, the visited location
l; and the user ID u are embedded into representative vectors
[¢ and u® based on embedding modules, respectively. Next, the
visiting time ¢; is encoded based on the positional encoding tech-
niques [20], [21] to extract the fine-grained temporal features.
However, the classical positional encoding does not well capture
the periodic behavior of human mobility. Thus, we propose a
Fourier-based positional encoder PE(+) as follows:

{PEQi(t) = sin(27it /),

PEg;11(t) = cos(2mit /), ©

where PE; (¢) represents the ith element of the positional encod-
ing of the absolute time or time difference ¢. 7y is the fundamental
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frequency. In our model, the same time of different days is
expected to be encoded into similar vectors. Thus, we set ~y
as one day in our model. In this way, the periodic behavior of
human mobility is well captured. Specifically, we denote the
positional encodings of ¢; as t5.

As for the waiting time 7;, we encode it by applying a
logarithmic transformation followed by a linear layer, i.e., 77 =
Linear(logr;). Then, Pol distribution I, is a |C|-sized vector
with each element I;(¢) = Ij,(c) representing the number of
Pols of category cinregion /;. We transform it into an embedding
vector I where each element I¢(c) has values ranging from 0
to 1. This is achieved by transforming each element I(c) into
the percentage of regions with fewer than I (c) Pols of category
c. Specifically, we denote this transformation as:

I7 =F(I,). (N

Finally, t$, 77, [, u®, and I are concatenated to obtain the
embedding of mobility record r;, which is denoted as 7. Then,

r is fed into an LSTM as follows:

e __ €. e. Je. [
{ri = [t&; 78515 uc),

hi = LSTMd)(hi,hTf). (8)

Note that in this process, the visiting time ¢; and waiting time
7; are redundant with each other. Specifically, with a given
initial time, we can reconstruct ¢1.; from 7y.; and vice versa.
However, we still feed both of them into the neural network.
The main reason is that we cannot guarantee that the neural
network can correctly learn the features in terms of both ¢; and
7; only based on one of them. Thus, we alternatively utilize the
redundancy between ¢; and 7; to better encode their features in
the hidden state variable h;, which paves the way for modeling
their dependency between the mobility feature z;. Specifically,
the information of mobility records 71.; are all encoded into the
current state vector h;. Thus, our model utilizes h; to calculated
the estimated posterior distribution of z; as follows:

{[qu;%] = MLP(h), ©
Q¢(Zi|7"1:i) = N(Nmaé)-

B. Generation

The generation process in our model describes the process of
synthesizing the next mobility record r; given historical latent
codes z1.; and historical mobility records r.;_1. For the sake of
simplicity, we denote the set of all neural network parameters in
the generation module as 6.

In the three components of r;, we only need to generate 7;
and [;, since t; can be obtained by t; = t;_1 + 7;_1. Inspired
by the temporal Poisson process (e.g., Poisson process, Hawkes
process), we model the probability distribution of 7; and [; as
follows:

{p(Ti|Z1m7”1:¢1) = M(21:6, T1sim1) - € HEE T (10)
p(lil 21, m1:-1) = W, (210, 7120 1),

where 7; and [; are modeled by the exponential distribu-

tion and the multinomial distribution, respectively. In addition,

U, (21.4,71.i—1) indicates the visiting probability of each location

l € L. Thus, we further have ), » ¥;(21.4,71:-1) = 1. At the
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same time, A(21.;,71.,—1) represents the intensity of the next
movement.

In order to model the long-term complicated correlation be-
tween the next mobility record and (z1.;,71.i—1), we utilize
another LSTM network parameterized by 6. Specifically, the
current mobility feature z; is concatenated with the embedding
of the last mobility record r{_; . Then, they are fed into the LSTM
network as follows:

{Tfl = [PE(ti—1 + 7i-1); u®],

11
hi = LSTMQ(hi—laZ%riefl)’ ( )

where h;_1 and h; represents the recurrent hidden state of the
LSTM. Note that different from (8) of the encoder network,
the waiting time 7;_ is directly added into the visiting time
t;—1 without been considered separately. Specifically, in (8) we
aim to model the correlation between users’ current mobility
record r; and current latent code z; through h;, which are
strongly correlated. However, in (11), we only need to model the
correlation between r;_; and r; through h;, where the waiting
time 7,1 plays an relatively unimportant role. Thus, we ignore
itin (11).

Then, the current hidden state h; is utilized to generate 7; and
l;. Specifically, our model feeds h; into a multi-layer perceptron
to obtain a scalar 7, an |£|-sized vector £!°¢, and a |C|-sized
vector £P°% as follows:

[, W'°¢, €7°") = MLPy(h;). (12)

In terms of generating waiting time 7,,, 77 is used as the
intensive of this temporal point process. That is,

M21:4,T15-1) = 1. (13)

Then, the waiting time 7 is drawn from (10).

In terms of generating locations, £/°¢ is used to directly
characterize the probability of visiting different locations. {7
represents the “intention” of the movement, i.e., the probability
of visiting different Pol categories. Then, the global Pol dis-
tribution embedding matrix I = [I7, I5, ..., Ij,] € RICXILl s
used to map the “intention” to concrete locations as follows:

W= (gt o W)t Ie (14)

where © is the Hadamard product operator, and W € RI¢l is a
learnable weight vector. Then, the obtained WP°? is an | £|-sized
column vector.

Finally, the weighted sum of WP and W'°¢ is used as the
final probability distribution of /; based on (10), which can be
expressed as follows:

(214, 71:-1) = W 4 BUPOL (15)

Note that the inference process and the generation process
are not symmetric with each other. Specifically, in the inference
process, z; is estimated only based on r.;, while in the genera-
tion process, r; is not only dependent on z7.; but also dependent
on r1.;,—1, which constitutes a feedback loop in the generation
network. That is, the output of the ith recurrent computation,
i.e., r; will be used as the input for the (i + 1)th recurrent
computation. We stress that the feedback is important. Since 2.
only contains the information about users’ decision tendency,
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Algorithm 1: Training Process of the Proposed Model.

Input: {R"},
Initialize: Randomly initialise 6, ¢.
for epoch € Nepocn do
for u € U do
RY,; < Random minibatch of M continuous
records drawn from R";
€4 < Sampled from N(0, 1);
g <— v@,quM (07 ¢7 126[7 GQJLW? u);
0,¢ < Update parameters using gradients g;

Output: 0, ¢

while the final decision including waiting time and staying time
can be only reflected by r1.; 1, which has a critical impact on the
future mobility behavior. Thus, the feedback loop is important
for the performance of the trajectory synthesizing model, which
will be evaluated in the experiment section.

C. Parameter Learning

Following the learning strategy in the variational inference
framework [9], we train our proposed model by maximizing the
evidence lower bound of the trajectory, which can be represented
as follows:

> Los(rin,

ueld

ZZE% o1ty [logpe (¥ 22)]

ueld i=1
— KL(gg (2 [r1:4)[[po (2))-

However, calculating the integration in (16) is intractable in
practice. In order to solve this problem, following the common
solution of variational inference based methods, we draw sam-
ples from g, (2¥|r}.;), and then approximate (16) based on the
following equation:

(16)

> Loolrin)~ Y Z logps (r{' |21 )pe (31')
ueld ueld i=1
- log(qd%ﬂriﬂi))], (17)

where z" is the sample of z}* drawn from g (2|7}, ).

Further, the reparameterization trick [9] is utilized to decouple
the parameter ¢ from z}* ~ ¢, (z¥|r}.;) for better parameter
estimation based on (9) as follows:

{eé‘ +— N(0,1),

- 18
30 = e oy () + ug (). (19

We denote the approximation of the loss function (16)
in the right hand of (17) as L(0, ¢, R*, €“, u). Note that
the reparameterization trick has been adopted in calculating
L0, ¢, R*, €“, u).

Further, in each iteration, we randomly sample a sub-
trajectory R}, with M continuous mobility records from R"
for each user u € U. Then, we calculate the loss function based

Algorithm 2: Synthesizing Trajectories Based on the Pro-
posed Model.

Input: 0, ¢, U
for v € U do
14— 1;
R* + ()
ﬁtl — 0

1< Sampled from p*(t);
t“ = 47
while % < T do
z¥ < Sampled from pp(z)
Calculate W', A} based on (6)-(11);
[ ~Multinormial(-|¥¥);
7;* ~Exponential(- [A%);
t;t%l = tu + Tz >
R R U{(&y, I, 7))
i1+ 1;

Output: {R"} e

on the sub-trajectories as follows:

> Los(rin,) = > L(0,¢, R" €, u),

ueld ueld
Nu T u u
%ZWL(91¢ MaeMvu)y
ueld
= LM(0,¢, Ry €hp,u),  (19)
ueld

where €Y, is the set of all random samples drawn from (18)
corresponding to sub-trajectory RY,. Then, our proposed algo-
rithmiteratively updates parameter ¢ and ¢ based on the gradient
of LM,

Finally, we present the detailed process of training our pro-
posed model in Algorithm 1. As we can observe, in each iter-
ation, this algorithm first randomly samples one sub-trajectory
RY,; with M continuous mobility records from R* for each user
u € U. Then, the corresponding €}y, is sampled from the noise
distribution A/(0,1). Based on them, L is calculated as the
loss function, and this algorithm updates 6 and ¢ based on the
gradient of LM .

We also present the pseudocode of synthesizing trajectories
based on our proposed model in Algorithm 2. Specifically, the
first visiting time is sampled from p*(t), which is the marginal
distribution of the first visiting time in each trajectory, and a
threshold of the time span of synthesized trajectories is defined
as T'. Then, based on the neural network weight 6 and ¢ learned
from Algorithm 1, this algorithm synthesizes users’ mobility
records one by one based on (10)—(15) until the time span of
synthesized trajectories exceeds 7T'.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 22,2025 at 03:36:15 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: SYNTHESIZING HUMAN TRAJECTORIES BASED ON VARIATIONAL POINT PROCESSES

TABLE II
STATISTIC INFORMATION OF DATASETS
Datasets ISP GeoLife | FSQ-NYC | FSQ-TKY
Duration 7 days | 64 months | 11 months | 11 months
#Users 100,000 182 1,083 2,293
#Records/User 261 453 210 250
#Locations 9,000 5,669 38,333 61,858

IV. PERFORMANCE EVALUATION
A. Experimental Settings

Dataset: We conduct our experiments on three real-world
trajectory datasets, including the ISP dataset, Geolife dataset,
and Foursquare dataset. Their information is introduced in detail
as follows:

® ISP Dataset: The ISP dataset is collected by collaborating
with a major Internet service provider (ISP) in China, of
which the duration is from April 19 to April 26, 2016,
covering the whole metropolitan area of Shanghai. Each
record in this dataset is characterized by an anonymized
userID, timestamp, the cellular base station. There are over
2,140,327 user trajectories involved in this dataset.

® Geolife Dataset: This dataset is collected by MSRA Geo-
life project [22], which contains mobility trajectories of 178
users with the duration of over four years (from April 2007
to October 2011). There are 17,621 trajectories involved in
this dataset. Each mobility record in this dataset is charac-
terized by latitude, longitude, altitude, and timestamp.

e Foursquare Datasets: This dataset is a publicly available
dataset collected by Yang et al. [23], which contains check-
ins of two cities including New York City and Tokyo from
April 12, 2012 to February 16, 2013. There are 227,428
check-ins in New York City and 573,703 check-ins in
Tokyo. Each record in the dataset includes the correspond-
ing user ID, timestamp, and Pol.

For better comparing and understanding different datasets,
we show their statistic information in Table II. Specifically, we
can observe that the ISP dataset has the densest trajectories,
whose average number of records per user is similar to other
datasets while the duration is much shorter. On the other hand,
the GeoLife dataset has the sparsest trajectories.

The raw human trajectory data may be full of noise, especially
communication data with the base stations (e.g., ISP dataset) or
the GPS trajectories (e.g., GeoLife dataset). Specifically, there
may exist inaccurate locations in trajectories, and it is also
possible to have a large number of redundant records in a short
period of time in the trajectories. What’s more, the time interval
between adjacent records can be very large, e.g., from several
hours to several days [23]. In order to eliminate the noise, we
pre-process the trajectories by merging mobility records with the
same location and close time, and filtering out outlier locations.
For the check-in datasets, the noise in terms of redundant records
and inaccurate locations is less. However, the interval between
adjacent records is prolonged. Thus, all trajectory datasets are
pre-processed by breaking sparse trajectories into dense sub-
trajectories if the time interval between adjacent records exceeds
a predefined threshold.
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Compared Algorithms: We compare our proposed trajectory
synthesizing algorithm with the following algorithms.

e TimeGEO: As a model-based trajectory synthesizing
method, TimeGEO [3] models users’ state only based on
whether they are at home. Then, users’ further movements
are modeled based on the explore and preferential return
(EPR) model [24].

e Semi-Markov: In semi-Markov process, the waiting time
is modeled by the exponential distribution [25]. Dirichlet
prior and gamma prior are used to model the transition
matrix and the intensity of the waiting time to implement
a Bayesian inference.

® Hawkes: Hawkes process [26] is a widely used classical
temporal point process, where an occurred data point will
influence the intensity function of future points.

e [STM: This model directly predicts the next locations and
waiting time based on the LSTM network, and the predic-
tion results are utilized as the synthesized trajectories [27].

® MoveSim: This model is recently proposed to synthe-
size human trajectories based on GAN, which introduces
prior knowledge and physical regularities to the SeqGAN
model [5].

The implementation code of TimeGEO, Semi-Markov,
Hawkes, and LSTM can be found in our Github repository.
As for MoveSim, we use the official implementation provided
in https://github.com/FIBLAB/MoveSim. All compared algo-
rithms are trained on the three real-world datasets, and then
utilized to synthesize trajectories. Specifically, TimeGEO, Semi-
Markov, and Hawkes are representative model-based methods
for trajectory synthesizing, while LSTM and MoveSim are the
representative data-based methods for trajectory synthesizing.
In addition, among the data-based models, MoveSim has been
the state-of-the-art algorithm with one of the best performance.
Thus, by comparing these selected algorithms covering the most
representative model-based and data-based methods, the perfor-
mance of our proposed algorithm can be credibly evaluated.

Metrics: As the problem of trajectory synthesizing is defined
in the previous section, the synthesized trajectories should be
evaluated in terms of two aspects. In the first aspect, the synthe-
sized trajectories should preserve the usability of the original
trajectory dataset. That is, two datasets should have similar
statistical properties. Thus, we elaborately select six metrics to
evaluate both the spatial statistical property and the temporal
statistical property of synthesized trajectories compared with
real-world ground-truth trajectories of users, which are defined
as follows:

e Distance: The traveling distance between adjacent mobil-
ity records in users’ trajectories, and is a metric in terms of
the spatial perspective.

® Radius: Radius of gyration, which is defined as the root
mean square of the distance of each location point in the
one trajectory to its center of mass [28].

® G-rank: The top visited frequency to different locations
with respect to all users, which is a metric in terms of the
spatial perspective.

® Duration: The waiting time of users at different locations,
which is a metric in terms of the temporal perspective.
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® Move: The visiting time of each mobility record, which is
a metric in terms of the temporal perspective.
e Stay: The average waiting time as a function of the visiting
time, which is a metric in terms of the temporal perspective.
Specifically, the metrics of Distance, Location, G-rank, Dura-
tion, and Move are expressed by probability distributions defined
on one-dimensional spaces. In order to compare the synthesized
trajectories and real trajectories in a more intuitive way, we
utilize the Jensen-Shannon divergence (JSD) to measure their
difference. Specifically, for two distribution p and g, the JSD
between them can defined as:

(. @) = 3L (pI 252 ) + g1 (a2, o)
where KL(-||-) is the Kullback-Leibler divergence [29]. On the
other hand, the distribution of Stay can be characterized from
two dimensions, including the visiting time and the waiting
time. Therefore, unlike other metrics, we compute the Jensen-
Shannon divergence between the Stay distributions of real data
and generated data in this two-dimensional space.

In terms of the second aspect, the synthesized trajectories
should be different from the original trajectories. We use two
metrics including overlapping ratio and symmetrized segment-
path distance (SSPD) [30] to evaluate the performance in terms
of this perspective. Specifically, we define the overlapping ratio
as the ratio of the number of identical spatio-temproal points
between the synthesized trajectories and the original trajectories,
where the identical spatio-temproal points are defined based on
discrete time bins (1 min in our experiments). On the other hand,
SSPD provides a meaningful evaluation method of distance
between high-dimensional trajectories.

Then, multiple original trajectories belonging to the same
users are ranked based on the overlapping ratio and SSPD,
and the trajectory with the highest overlapping ratio or the
smallest SSPD is selected. The results can also be extended by
considering more similar trajectories, including the top-2 and
top-3 similar real trajectories.

Parameter Settings: As the model shown in Fig. 1, the embed-
ding sizes of location and user ID are 256 and 128 respectively,
and the encoding sizes of the time stamp and waiting time
are both 256. And the output size of LSTM, is set to 512.
In addition, MLP 4 contains two identical 2-layer MLPs, with
Leaky-ReLu activation after the first layers and the size of the
hidden layers being set to 256. The latent variable z is set to be
a 512-sized vector. In terms of the generation, the embedding
layer of user ID as well as the positional encoding are the same as
those in the encoder, and the output size of LSTMy is also 512.
MLPy is composed of two components for temporal parameters
and spatial parameters, respectively. The temporal parameter 7) is
obtained from a 3-layer MLP with Leaky-ReLu activation func-
tion after the first two layers, and an exponential non-linearity
applied after the third layer to ensure the obtained 7 is positive.
The spatial parameter U!°¢ and P! are calculated based on the
output of a 3-layer MLP with Leaky-ReLu activation after the
first two layers. Ploc ig the soft-max of the output, while YPoi
or more precisely £P?, is obtained by activating the output with
Leaky-ReLu and then passing through another linear layer to
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ensure the correct vector size, the size of POI, for computation.
The size of the hidden layers in MLPy is set to 128. The weights
«, (B are set to 0.9 and 0.1, respectively. In addition, the LSTMs
are initialized using Xavier’s method and the linear layers are
initialized using KaiMing’s Method. The threshold of the time
span 7' is set to 24 hours, i.e., one day by default. As for the
spatial divisions, we utilize the default spatial divisions, i.e.,
cellular base station for the ISP dataset, and we utilize the spatial
grids of 1 km x 1 km as the spatial divisions for the GeoLife
dataset and two Foursquare datasets. Unless otherwise stated,
90% of trajectories in each dataset are randomly selected as the
training set, and the left 10% of trajectories are used for testing.

In addition, all baselines except MoveSim and TimeGEO are
able to generate trajectories with a continuous temporal distri-
bution, which can be compared with trajectories synthesized by
our model in the same setting directly. However, MoveSim and
TimeGEO are proposed to synthesize trajectories with discrete
time bins. What’s more, MoveSim further requires fixed-length
trajectories with discrete temporal distribution as input. In the
original paper of MoveSim [5], all baselines use fixed-length
discrete trajectories as input and generate trajectories with the
same form to be compared with the discretized and interpolated
real-world trajectories. Differently, in our experiments, the tra-
jectories with a continuous temporal distribution in the training
set are discretized and interpolated to obtain the fixed-length
trajectories to train the MoveSim model. Then, in the process
of testing, the synthesized trajectories of MoveSim, which are
discrete and fixed-length, are post-processed by merging records
with identical locations and adjacent time bins to produce time-
continuous trajectories with the same form as introduced in Sec-
tion II-A, and then compared with the original variable-length
trajectories with continuous temporal distribution in the test set.
We implement similar operations to the trajectories generated
by TimeGEO.

B. Experimental Results

Performance in Terms of Usability: We first show the perfor-
mance of different algorithms in terms of the selected metrics
measured by JSD. We first show the experimental results based
on the ISP dataset in Table III, where we repeat our experiments
for 5 times and exhibit the means and standard deviations of
different metrics. We can observe that all metrics of trajectories
synthesized by different algorithms are stable. Specifically, the
average ratio of the standard deviation to the mean of differ-
ent metrics of different algorithms is only 25.1%, while the
performance gap between our proposed algorithm and each
compared algorithm is 56.5%. In addition, we can observe that
the performance of MoveSim obviously decreases compared
with the results shown in [5]. The main reason is that MoveSim is
designed for synthesizing trajectories with discrete and succes-
sive time slots. Thus, an interpolation method is implemented on
different trajectory datasets to fill up users’ locations at missing
time slots. At the same time, MoveSim requires fixed-length
trajectories as the input. Thus, the trajectories in the test set
are also discretized and interpolated in [5] to obtain the fixed-
length trajectories. Different from them, we mainly consider
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PERFORMANCE COMPARISONS ON THE ISP DATASET, WHERE BOLD DENOTES BEST (LOWEST) RESULTS AND UNDERLINE DENOTES THE SECOND BEST RESULTS

Metric Distance Radius G-Rank Duration Move Stay
Algorithm (JSD) (JSD) (JSD) (JSD) (JSD) (JSD)
Semi-Markov 0.1217£0.0044 0.0126£0.0003 0.098740.0002 0.0142+0.0002 0.0686£0.0004 0.101040.0004
TimeGEO 0.4321£0.0025 0.275240.0035 0.137040.0022 0.1987£0.0020 0.2193+£0.0007 0.4067+0.0014
Hawkes 0.0262+0.0010 0.0104+0.0008 0.14384-0.0014 0.0444-+0.0008 0.1053+0.0050 0.131540.0010
LSTM 0.0476+£0.0013 0.0131£0.0005 0.09624-0.0004 0.0740+£0.0004 0.0592-£0.0003 0.148140.0002
MoveSim 0.0278+0.0120 0.055140.0393 0.26124-0.0315 0.307740.0060 0.124340.0217 0.391140.0178
Our 0.0193+0.0007 0.0053+0.0008 0.141040.0002 0.01294+0.0006 0.0133-+0.0005 0.0542+0.0005

TABLE IV

PERFORMANCE COMPARISONS ON THE GEOLIFE DATASET, WHERE BOLD DENOTES BEST (LOWEST) RESULTS AND UNDERLINE DENOTES THE

SECOND BEST RESULTS

Metric Distance Radius G-Rank Duration Move Stay
Algorithm (JSD) (JSD) (JSD) (JSD) (JSD) (JSD)
Semi-Markov 0.2926+0.0099 0.1838+£0.0037 0.250940.0012 0.178940.0012 0.0462+0.0012 0.23000.0008
TimeGEO 0.2660+0.0161 0.2920+£0.0173 0.2600£0.0024 0.19404-0.0082 0.16254-0.0051 0.4493+0.0074
Hawkes 0.1157+0.0134 0.1353+£0.0051 0.253940.0025 0.058140.0016 0.0614+0.0108 0.1922+0.0055
LSTM 0.1696+0.0045 0.1045+£0.0024 0.199740.0028 0.092340.0021 0.0410+0.0017 0.1988-0.0032
MoveSim 0.1523+0.0373 0.1068+£0.0440 0.298140.0435 0.27504-0.0028 0.1548+0.0802 0.4238-+0.0519
Our 0.1503+0.0095 0.0911+£0.0079 0.1996+0.0024 0.0415+0.0018 0.0233+0.0028 0.1301-+0.0023

TABLE V

PERFORMANCE COMPARISONS ON THE FOURSQUARE DATASET OF NYC, WHERE BOLD DENOTES BEST (LOWEST) RESULTS AND UNDERLINE DENOTES THE

SECOND BEST RESULTS

Metric Distance Radius G-Rank Duration Move Stay
Algorithm (JSD) (JSD) (JSD) (JSD) (JSD) (JSD)
Semi-Markov 0.0808+0.0093 0.0511£0.0049 0.1398+0.0004 0.040040.0009 0.0319+0.0015 0.1383+0.0013
TimeGEO 0.2726+0.0120 0.3540+£0.0074 0.169340.0043 0.09854-0.0035 0.127740.0036 0.3307-0.0033
Hawkes 0.0615+0.0072 0.0601£0.0061 0.163540.0010 0.02384+0.0019 0.0304+0.0067 0.1719+0.0025
LSTM 0.0419+0.0020 0.0420+£0.0023 0.124440.0013 0.04394-0.0018 0.0236+0.0008 0.1590-0.0041
MoveSim 0.0421+0.0032 0.0676+£0.0035 0.333140.0683 0.137640.0024 0.1269+0.0172 0.3284+0.0148
Our 0.0320+0.0023 0.0313+0.0048 0.1234+0.0022 0.020240.0006 0.0133+-0.0007 0.1318+0.0026

modeling variable-length trajectories in our paper. In the process
of training, the trajectories in the training set are still discretized
and interpolated to obtain the fixed-length trajectories to train
the MoveSim model. However, in the process of testing, the
synthesized trajectories of MoveSim, which are discrete and
fixed-length, are compared with the original variable-length
trajectories with continuous temporal distribution, leading to
its performance degradation. We can observe that our model
achieves the best performance in most usability metrics.

Specifically, the performance gap between our proposed al-
gorithm and the best compared algorithm is the largest in terms
of Move, indicating the strong ability of our proposed model in
terms of modeling the visiting time of users’ mobility behavior.
In addition, we can observe that LSTM achieves the second best
performance in terms of Move, since it models the sequential
dependencies of human movement in a similar way [27]. Com-
pared with it, our model is able to automatically learn these
characteristics of human mobility from data.

Further, we show the performance of different algorithms
on the Geolife dataset and Foursquare datasets of New York
city and Tokyo in Tables IV, V, and VI, respectively. From

the experimental results, we can observe a similar trend with
the results shown in Table III. That is, our model achieves
the best performance in terms of the most usability metrics,
demonstrating the superiority of our method in synthesizing
human trajectories.

Usability Visualization: For better comparison, we also visu-
alize the metrics of usability. Specifically, the probability density
function (PDF), the cumulative distribution function (CDF), and
the time curve are selected for different metrics and shown in
Figs. 2 and 3. As we can observe from Fig. 2(e) and (f), we can
observe our proposed model well captures the daily rhythm of
humans, i.e., the trajectories based on our proposed model have
higher travel frequency at daytime and longer average waiting
time at night. Overall, compared with the performance of the best
baselines, trajectories synthesized by our proposed algorithm
are more similar to the real trajectories in terms of most metrics,
indicating its effectiveness.

Performance in Terms of Uniqueness: We evaluate whether
the synthesized trajectories are different from the original tra-
jectories, i.e., the uniqueness of the synthesized trajectories. We
select two key metrics to measure their difference.
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TABLE VI
PERFORMANCE COMPARISONS ON THE FOURSQUARE DATASET OF TOKYO, WHERE BOLD DENOTES BEST (LOWEST) RESULTS AND UNDERLINE DENOTES THE
SECOND BEST RESULTS

Metric Distance Radius G-Rank Duration Move Stay
Algorithm (JSD) JSD) (JSD) (JSD) JSD) (JSD)
Semi-Markov 0.1319£0.0139 0.0464+0.0012 0.042540.0003 0.0664=£0.0003 0.105740.0011 0.191540.0008
TimeGEO 0.2361£0.0072 0.3238+0.0061 0.052540.0013 0.13784+0.0026 0.26060.0020 0.4936-£0.0042
Hawkes 0.0279-£0.0040 0.0293£0.0015 0.054240.0008 0.0491+0.0013 0.0941-£0.0039 0.1845=+0.0018
LSTM 0.0644+0.0039 0.031610.0021 0.033340.0004 0.090940.0013 0.110940.0009 0.2439+0.0022
MoveSim 0.0634+0.0270 0.039740.0118 0.198740.0310 0.112140.0271 0.281940.0404 0.4827+0.0524
Our 0.0583+0.0021 0.0287+0.0006 0.0329+0.0007 0.0489+0.0008 0.0140+0.0005 0.1048-+0.0019
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Fig. 2. Performance visualization on ISP Dataset.

The first metric is the overlapping ratio. Specifically, for two
trajectories for comparison, we align them in the time dimension
one by one based on a pre-defined temporal threshold and
determine whether the locations at the corresponding time points
are exactly the same. Then, the overlapping ratio is defined as the
ratio of the number of identical locations to the total trajectory
length. Based on the concept of the overlapping ratio, the metric
of uniqueness examines the overlapping ratio of top-k most
similar original trajectories for each synthesized trajectory. For
a given synthesized trajectory, if the overlapping ratio between
it and its top-k most similar original trajectory is high, it rep-
resents that the synthesized trajectory is possibly contained in
the original trajectory dataset, indicating a poor performance
of the model to generate trajectories different from the original
trajectory dataset. In turn, a small overlapping ratio indicates the
good performance of the model to generate trajectories different
from the original trajectory dataset. The CDF of the overlapping
ratio of top-1, top-2, and top-3 most similar original trajectories
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Fig. 3. Performance visualization on the Geolife Dataset.

for each synthesized trajectory of the two datasets is shown
in Fig. 5(a) and (b). Take the results of the Geolife dataset for
example. We can observe that in terms of the top-1 most similar
trajectory, over 80% synthesized trajectories have an overlap-
ping ratio of less than 40%. In terms of the top-3 most similar
trajectories, we can further observe that over 80% synthesized
trajectories have an overlapping ratio of less than 20%. The
small overlapping ratio between synthesized trajectories and
original trajectories indicates that the synthesized trajectories are
significantly different from the original trajectories, indicating
the effectiveness of the synthesized trajectories.

The second metric is the Symmetrized Segment-Path Dis-
tance (SSPD) [30]. Specifically, the Segment-Path distance
SPD(T7y,T») between two arbitrary trajectories 77 and T is
defined as the mean of all distances from records composing
T; to the trajectory 75, which is asymmetric in terms of 7T}
and T5. Then, SSPD is defined as the mean of SPD(77,7%)
and SPD(7%,T7), which is symmetric in terms of 77 and T5.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 22,2025 at 03:36:15 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: SYNTHESIZING HUMAN TRAJECTORIES BASED ON VARIATIONAL POINT PROCESSES 1795
1.0 1.0 1.0 1.0
0.8 Lo 0.8 0.8
0.9
5 0.6 & 09 & 0.6 o 0.6
© " Cos I © . Ooa "
0.4 —— MinSSPD —— MinSSPD 04 —— MinSSPD —— MinSSPD
02 —— AvgSSPD 0.8 —— AvgSSPD 02 —— AvgSSPD 0.2 —— AvgSSPD
’ —— MaxSSPD 0.7 —— MaxSSPD ’ —— MaxSSPD 00 —— MaxSSPD
0 2 4 6 8 10 12 0 50 100 150 200 250 300 350 400 00 0 1 2 3 4 5 . 0 1 2 3 4 5 6 7
SSPD SSPD SSPD SSPD
(a) SSPD of ISP (b) SSPD of Geolife (c) SSPD of FSQ-NYC (d) SSPD of FSQ-TKY
Fig. 4. Evaluation in terms of SSPD between synthesized trajectories and original trajectories.
1.0 — Topl 1.0 1.0 1.0
0.8y —— Top2 0.8 0.8 0.8
—— Top3
W 0.6 w 0.6 W 0.6 W 0.6
8 S S 5]
0.4 0.4 —— Topl 0.4 —— Topl 0.4 —— Topl
0.2 0.2 —— Top2 0.2 —— Top2 0.2 —— Top2
—— Top3 —— Top3 —— Top3
0.0 0.0 0.0 0.0
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Overlapping Ratio Overlapping Ratio Overlapping Ratio Overlapping Ratio
(a) Uniqueness of ISP (b) Uniqueness of Geolife (c) Uniqueness of FSQ-NYC (d) Uniqueness of FSQ-TKY
Fig. 5. Evaluation in terms of Uniqueness between synthesized trajectories and original trajectories.
§ = Simulation  EEE Real Data ? = Simulation  EEE Real Data
& 10- &1o-
H ‘ 3 ‘
E | g m
o o
il oo Ml ¢ L0
o S
Fl 2
£, |||.||||||||||||||||||||.|.|.||||||‘I|N HN“M“N\“MI|I|||I|I| £, ““““““““”HHH”I‘ ‘|||||m|. L “““““““HHHHHH““
20
. L s . . . Time, h Time, b
Fig. 6. Visualization of individual synthesized trajectories. me. ot me.nodr
Fig. 7. Visualization of aggregate synthesized trajectories.
Then, the SSPD between the synthesized trajectories and the 0005 o013
.. . . . . 0.019 . o
original trajectories is calculated to evaluate the ability of our g . g oo goo
. .. . . . 8 5 0.005 g
proposed mf)d.el in te.rms of synthesizing tra]ec.torles different Zoois & oo goou
from the original trajectory dataset. The experimental results o018 0.005 oon
. . default 1km 3km default 1km 3km default 1km 3km
of the four datasets are ShOWn 1n F]g 4, Where we ShOW the Spatial Resolution Spatial Resolution Spatial Resolution
. . . . . . 0.140
distribution of the minimum SSPD, maximum SSPD, and aver- 0120 0013 oo
. X 0.013 .
age SSPD, respectively. We can observe that the SSPD between 8 oo 8 o013 goos
. . . . . . . . (6] :
the synthesized trajectories and the original trajectories is also 0.060 oo 0.052
. > 0.040 0.013 0.052
large. Specifically, the average SSPD is 2.53 km, 25.81 km, Gt T Sm o et e Smo st dm oSk
. Spatial Resolution Spatial Resolution Spatial Resolution
1.13 km, and 1.78 km on the ISP, GeoLife, FSQ-NYC, and
FSQ-TKY datasets, respectively. Such a large distance in terms  Fig. 8.  Performance of our proposed algorithm versus spatial resolution.

of SSPD suggests that users’ true locations are not leaked from
the synthesized trajectories, indicating the good performance of
our proposed model.

Case Study: We further present two case studies of the syn-
thesized trajectories to evaluate their quality. We first show the
visualization of two individual synthesized trajectories in Fig. 6.
We can observe the strong circadian rthythm of the synthesized
trajectories. Then, we show the visualization of the aggregate
synthesized trajectories in Fig. 7, where the aggregate population
of two representative regions is exhibited. We can observe that
our synthesized trajectories resemble real data by well capturing
its trend, indicating the effectiveness of our proposed model.

Performance With Different Data Quality: We then evaluate
the performance of our proposed method with different data
quality. Specifically, we consider two key factors including the

spatial resolutions and the training set size. Without loss of
generality, we only show the experimental results based on the
ISP dataset in this section.

We show the performance of our proposed model in terms of
different usability metrics as the function of spatial resolutions.
Specifically, we consider three different spatial resolutions,
which include the default geographical division based on the
cellular base stations and the geographical division based on the
spatial grids of 1 kmx1 km and 3 kmx3 km, respectively. The
results are shown in Fig. 8. As we can observe, with lower spatial
resolutions, the usability metrics in terms of JSD, however,
decrease. The main reason is that the synthesized trajectories
are also evaluated based on low-resolution test datasets, which
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is an easier task. Overall, the performance in terms of all us-
ability metrics is stable with changes in the spatial resolutions,
indicating the robustness of our proposed algorithms.

Then, we show the performance of our proposed model in
terms of different training set size. Specifically, we utilize 30%,
50%, 70%, and 90% trajectories as the training set, respectively,
and show the performance of our proposed model in terms
of different usability metrics as the function of the ratio of
mobility trajectories used as the training set. The experimental
results on the ISP dataset are shown in Fig. 9. In addition, the
corresponding results on the FSQ-NYC and FSQ-TKY datasets
are shown in Figs. 10 and 11, respectively. We can observe that
in most cases, the performance in terms of different metrics
increases with the size of the training set. However, we can also
observe a small number of metrics with contrary tendencies.
That is, the performance decreases with the size of the training
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set, especially in the FSQ-NYC and FSQ-TKY datasets. A
potential reason is that these two Foursquare datasets are sparse.
That is, the time interval between two adjacent records is very
long. Thus, in our pre-processing steps in terms of breaking
trajectories into sub-trajectories if the time interval between
adjacent records is prolonged, the Foursquare trajectories are
broken into too many short trajectories, leading to the difficulty
in terms of modeling their distribution. Thus, the performance in
terms of some metrics is not stable on the Foursquare datasets.

Ablation Study: In order to evaluate the importance of the
different components proposed in our work, we conduct an
ablation study on two mobility datasets, which is performed
by removing each component from the complete model. The
results are also evaluated by the selected six metrics. Without
loss of generality, we only show the results on the ISP dataset in
Table VII. Specifically, Our Best represents the complete version
of our proposed model, - Fourier replaces the Fourier-based
positional encoder by the traditional positional encoder, - ¥P%!
removes the global Pol distribution matrix, - I; removes the Pol
distribution I; in the input of the inference module, - 7; removes
the waiting time 7; in the input of the inference module, and -
Feedback removes the feedback of the generation module. In
addition, we define A = (&' — £) /€ as the relative improvement
of our proposed model compared with these variants, where & is
the performance indicator of Our Best and £’ is the performance
indicator of a certain variant. In addition, we define A as the
average relative improvement in terms of all the six metrics.
As we can observe, the absence of 7; and the alternation of the
positional encoding would both cause a significant drop of the
performance in terms of Duration. Another observation is that
- Feedback has the largest performance gap in terms of most
metrics, indicating the importance of the feedback loop in the
generation module. That is, in the generation module, except for
21.4, we further need 1., to accurately model the distribution
of r;, which is consistent with our discussion in Section III-B.
Overall, our proposed method outperforms all variants in terms
of the six metrics in most cases, indicating the effectiveness of
our proposed modules including the Fourier-based positional en-
coding mechanism, feedback mechanism in the general module,
etc.

V. RELATED WORK

Applications Based on Mobility Trajectories: Mobility trajec-
tories are instrumental for a number of applications including
location recommendation [31], [32], [33], [34], [35], [36], intel-
ligent transportation [2], [37], [38], etc. Ye et al. [31] consider
the social and geographical characteristics of users and locations
in their location recommendation system. Zheng et al. [32]
recommend locations to users based on their trajectories and
comments. Yuan et al. [33] recommend the point of interest
(Pol) to users by using the collaborative filtering method and
incorporating temporal information. Liu et al. [34] propose a
geographical probabilistic factor analysis framework for Pol
recommendations, which strategically takes multiple factors in-
fluencing the user check-in decision process into consideration.
Wang et al. [35] recommend spatial items by modeling and
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TABLE VII
RESULTS OF THE ABLATION STUDY IN TERMS OF DIFFERENT METRICS
Metrics Distance Radius G-Rank Duration Move Stay A
JSD A JSD A JSD A JSD A JSD A JSD A
Our Best 0.0193 - 0.0053 - 0.1410 - 0.0129 - 0.0132 - 0.0541 - -
- Fourier 0.0246 27.5% 0.0061 15.1% 0.1132 -19.7% 0.0547 324.0% 0.0143 83% 0.0951 75.8% 71.8%
- ppoi 0.0156 -19.1% 0.0056 5.6% 0.1705 20.9% 0.0186 44.2% 0.0206 56.1% 0.0706 30.5% 23.0%
-I; 0.0234 21.2% 0.0078 47.1% 0.1502 6.5% 0.0202 56.6% 0.0153 159% 0.0638 17.9% 27.5%
- T 0.0271 40.4% 0.0063 18.9% 0.1265 -10.1% 0.0387 200.0% 0.0136 3.0% 0.0777 43.6% 49.3%
- Feedback  0.0297 53.9% 0.0108 103.7% 0.0865 -38.6% 0.0529 310.1% 0.0809 512.9% 0.1572 190.6% 188.8%

Bold denotes the best (lowest) results and underline denotes the second best results.

fusing the sequential influence, cyclic patterns, and personal
interests. Yuan et al. [36] propose a context-aware location rec-
ommendation system that considers user, spatial, temporal, and
activity aspects simultaneously. Liu et al. [2] propose a localized
transportation mode choice model for bus routing optimization
based on location trajectories of taxicabs. Biczok et al. [37] find
strong logical ties between different locations based on human
trajectories obtained from a live indoor/outdoor positioning and
navigation system deployed at a large university campus in
Norway. Wu et al. [38] interpret traffic dynamics based on
user trajectories obtained from geo-tagged contents published
in social networks. The large number of applications based on
mobility trajectories further indicates our strong motivations to
develop a power trajectory synthesizing model to overcome the
privacy issues of utilizing real-world trajectory data.

Temporal Point Process: The temporal point process has
been widely used in many applications, including earthquake
modelling [39], computational finance [26], and human behavior
modelling [40]. In recent years, the temporal point process
has been combined with the novel deep neural network tech-
niques [14], [15], [17], [18], [19], and has exhibited outstanding
performance in terms of the prediction of the time-stamped
sequential data. Du et al. [18] propose the Recurrent Marked
Temporal Point Process (RMTPP), which utilizes the Recurrent
Neural Network (RNN) to model the intensity function of the
temporal point process. Wu et al. [19] utilize the RMTPP to
model time-stamped sequences with multiple markers based on
the factorial model, of which the idea is inspired by the factorial
hidden Markov models [41]. However, these models are deter-
ministic, leading to their disability in capturing the uncertainty of
sequential data. At the same time, other studies seek to combine
the neural point process with variational inference techniques
to capture the uncertainty [12], [13], [16], which also improves
their ability to synthesize sequential data. Mehrasaetal. [ 12] pro-
pose the Action Point Process VAE (APP-VAE), which utilizes
VAE combined with RNN for modeling action sequences from
videos. Pan et al. [16] combine VAE with the temporal point
process to model sequential data. Mehrasa et al. [13] further
propose an intensity-free framework for variational temporal
point processes that directly models the point process distribu-
tion by utilizing normalizing flows. Simini et al. [42] propose
a deep gravity model to generate mobility flows that utilize
deep learning to exploit features (e.g., land use, road network,
transport, food, and health facilities) and discover non-linear

relationships between them. At the same time, a number of
existing studies combine deep learning techniques with ordinary
differential equations (ODE) [43], [44], which is referred to as
ODENet. Chen et al. [44] utilize ODENet for continuous-depth
modeling and continuous-time modeling. Jia et al. [43] further
combine ODENet with temporal point processes, which focuses
on predicting future time series rather than data generation. Thus,
rather than the variational inference framework, this method
selects to directly use the log probability density as the target
function. Different from them, our paper focuses on the human
trajectory synthesizing problem, which has a number of unique
characteristics and challenges compared with the common se-
quential data synthesizing problem, including hidden semantics
and complicated joint correlation with both visiting time and
waiting time.

Trajectory Synthesizing: A number of different approaches
have been proposed to synthesize human trajectories [45], [46],
[47], which can be divided into model-based methods and data-
based methods. Model-based methods make strong assumptions
about human mobility and synthesize trajectories based on prob-
abilistic models or statistical models [3], [6], [24], [48], [49],
[50], [51]. Isaacman et al. [48] synthesize trajectories based
on a statistical probability model in terms of the distribution of
commute distances, probability of a call at each time bin, etc. Lin
et al. [6] generate mobility trajectories based on Input-Output
Hidden Markov Model (I0-HMM). Bindschaedler et al. [49]
focus on preserving the privacy of users, and they synthesize
trajectories by replacing each location with locations with sim-
ilar semantics. On the other hand, data-based methods seek
to model users’ mobility behavior by adopting deep learning
techniques including CNN or RNN combined with GAN [4],
[5], [52], [53]. Ouyang et al. [4] synthesize fixed-length mobility
trajectories with continuous-time gap based on the CNN model.
Feng et al. [5] synthesize fixed-length trajectories based on
GAN. However, these methods all have a number of different
limitations. Due to the strong assumption of model-based meth-
ods [3], [48], they are hard to incorporate multi-dimensional
external information. Data-based deep neural methods [4], [5]
can only model and synthesize fixed-length trajectories limited
by their loss function in the training process. Different from
them, our proposed method utilizes the temporal point process as
the bridge between deep neural networks and users’ mobility be-
havior based on the novel variational inference framework, and
is able to capture the hidden semantics and uncertainty of human
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trajectories, and model the continuous temporal distribution of
variable-length trajectories, which overcomes the limitation of
existing approaches.

VI. CONCLUSION

In this paper, we propose a novel human trajectory syn-
thesizing model, which utilizes the temporal point process as
the bridge between deep neural networks and users’ mobility
behavior based on the variational inference framework. This
model maintains the strong modeling ability of the neural net-
work to incorporate multi-dimensional external information. In
addition, the Bayesian-based variational inference framework
much improves the interpretability of the proposed model and
the ability to model variable-length trajectory with continuous
temporal distribution. We believe this work paves the way to-
ward a systematic understanding, synthesizing, and simulating
human mobility trajectories in the real world. There are several
limitations of this work. First, we do not consider complicated
privacy criteria such as differential privacy, because they require
modification of the loss function, which will influence the per-
formance of the proposed algorithm. In addition, other formats
of the intensity function in the adopted exponential function
possibly improve the performance of the proposed algorithm,
which we leave for future work.
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