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Abstract—The advent of machine learning has resulted in the
rapid development of machine learning accelerators that are
capable of computing tensor operations efficiently. Specifically,
these accelerators compute matrix-matrix multiplication, a key
routine in linear algebra libraries and machine learning. While
using the accelerators would result in high performance radar
signal processing, the algorithms used often require significant
redesign in order to efficiently map them on to existing machine-
learning hardware. In this paper, we show that higher levels of ab-
straction facilitate the efficient mapping of array algorithms onto
commercial-off-the-shelf (COTS) machine learning hardware that
results in higher performance in terms of execution time and/or
throughput. Furthermore, similar levels of abstraction can be
used to design efficient i mplementations o f M L a Igorithms for
radar processing, resulting in improved radar capabilities.

Index Terms—Super-resolution, machine-learning, high perfor-
mance computing, efficiency, performance

I. INTRODUCTION

Phase array algorithms and machine learning models are
often written using a high level language such as Matlab [1],
Tensorflow [ 2] o rJ ulia [ 3]. T he i nterfaces o f't hese high-
level frameworks are often designed to resemble mathemat-
ical statements. This alignment between implementation and
mathematical description enables scientists and developers to
convert an algorithm to executable code with relative ease.
Moreover, these frameworks capture the operations that need
to be performed as opposed to capturing hardware imple-
mentation details; resulting in portable code that can run on
different platforms. However, the performance attained with
these frameworks are highly dependent on 1) the way the
implementation is written, 2) the mapping from the input
language to the high-performance library routines underlying
these frameworks, and 3) the operations supported by the
frameworks.

Very often, array algorithms are described as operations that
are performed on individual steering vectors, array elements,
and data frames. This level of description often means that
each individual operation does not contain sufficient compu-
tation in order for them to be mapped efficiently o n modern
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commercial-off-the-shelf (COTS) architecture such as CPUs,
GPUs and FPGAs. As a result, implementations based on such
description often results in poor utilization of the available
compute resources leading to low performance such as long
execution time and/or low throughput. COTS architectures
with specialized hardware accelerators that target machine
learning workloads require even more computation in order
to achieve a high utilization of the compute resources. This
means that the low level at which algorithms are described
becomes an even bigger obstacle for attaining performance.

In this paper, we show that it is necessary to describe
the desired computation at a higher level of abstraction than
currently provided by existing languages/frameworks in or-
der to efficiently map array workloads onto modern COTS
architectures. Leveraging insights from multiple decades of
high performance domain-specific library designs and program
synthesis, we discuss extensions to the Tensorflow language
that facilitate the description of array and ML computa-
tional pipelines. Specifically, using a classical array algorithm
(MUSIC) and a machine learning for signal processing, we
demonstrate how different techniques more commonly applied
on scientific workload can provide significant speedup for
array processing workload through the use of a higher level
of abstraction.

II. ABSTRACTIONS NEEDED FOR PERFORMANCE

We motivate the need for higher level of abstractions using
an example array processing workload, Direction of Arrival
(DoA) estimation. Specifically, we use the Multiple Signal
Classification algorithm, referred to as MUSIC [4] to compute
the estimate. Below, we detail the computational steps in
MUSIC, and present the insights that could be used given
information at increasing levels of abstraction.

A. Overview of MUSIC

Mathematically, the MUSIC algorithm can be described
with the following computational pipeline [5], [6]:
1) Compute Correlation Matrix, R. The first step of the
MUSIC algorithm is to compute the correlation matrix,
R based on the received radar signals.

1 X
_ H
R= % 1221 Tix; (1)

where K is the number of antenna elements and x; is
the received signal vector.
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2) Finding Basis for Noise Subspace, (). The MUSIC algo-
rithm makes the assumption that the noise subspace is
orthogonal to the signal subspace. As such, the eigenvec-
tor of R is computed, and the vectors corresponding to
the n smallest eigen-values are extracted and multiplied
to form the noise subspace ().

R — [UU,JA[UU, " )
Q =U.U}!
3) Finding Output Power Spectrum, P(¢).
1
P = 3
= T (6)qa(@) @

Notice from the above description that the computations of
the correlation matrix R and the power at individual angles,
P(¢)'s, are described in terms of single array elements, and
individual steering vectors. This low level of abstraction, when
implemented as is, results in the use of many memory-bound
routines which means that computational resources are often
idle while data is moved from source to the compute resources.

B. Raising the level of abstractions

We discuss different levels of abstractions that are applicable
to the MUSIC algorithm, and the different optimizations made
available by the abstractions.

1) Beyond vector operations: A key observation made by
the linear algebra community is that vector-based, memory-
bound operations can be transformed into compute-bounded
operations by casting them in terms of matrix-matrix multipli-
cation. This insight underlies the shift from Level 1 and Level
2 Basic Linear Algebra Subprograms (BLAS) [7], [8] to the
Level 3 BLAS [9]. Using the same approach, the computation
of the correlation matrix can be reorganized into

1
=—XXxH
R = ,

where X is a matrix created by collating the received vectors
x;’s as columns of X in the following manner:

X = (xo|z1] ... |zK).

We use the fact that R is the sum of the outer products, to
reshape it into matrix multiplication, a Level 3 BLAS oper-
ation. While the number of floating point operations remain
the same, the reorganization allow us to more efficiently hide
the cost of moving data, while also utilizing existing compute
resources more effectively. On modern COTS architectures
with specialized matrix-matrix multiplication accelerators, the
reformulation from vector to matrix operations also allows
these specialized accelerators to be used.

The computation of the power spectrum can also be ex-
pressed in terms of matrix operations. First, we group all the
steering vectors a; together to form a steering matrix A.

A = (aplaq]| ... |ak).

This steering matrix is then applied to the noise subspace.

1
PO = Gagtangay
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Note the use of the the diag(.) operator to pick out the correct
elements of the application of the steering matrix.

2) Exploiting Matrix Properties: Once computations on
vectors have been reorganized into computation on matrices,
various matrix properties can be exploited to gain better
performance. For instance, computing correlation matrices
of various snapshots is a common operation in many array
algorithms. This means that, in addition to recognizing that the
computation is a matrix-matrix multiplication, we can exploit
the observation that correlation matrix R is Hermitian. This
means means that only (either the upper or lower) half the
elements of R need to be computed. A similar observation
can be made for computing ). However, a drawback of this
method of computation is that subsequent operations that use
matrix R (or ) needs to be cognizant of the fact only half
the elements in the matrix are available. However, as we
illustrate in the next subsection, information across different
computation operations could be used to reduce the cost of
computations.

3) Optimizing across computational blocks: Beyond op-
timizing within a computational block, raising the level of
abstraction across computational blocks allows for even more
optimization opportunities. We look back at the power spec-
trum calculation. The computation of @ performed in the
second block in the MUSIC algorithm can be folded into
Equation II-B1 as follows:

B = A"u,, (4)
1
Ple) = diag(BBH) )

Notice that BB is a familiar pattern, and the symmetry
available in the problem can be used to compute half the
outputs. The diagonal elements are the final result of the power
calculation.

Block diagrams for describing the MUSIC algorithm at
different levels of abstraction are shown in Figure 1.

C. Performance Impacts of Different Levels of Abstractions

In Figure 2, we compared the performance of the MU-
SIC algorithm implemented by exploiting optimizations using
different levels of abstraction and restructuring. We report
performance as the number of radar array elements increases
along the x-axis. We also show 2 different sampling sizes,
512 and 4096 samples. All 4 implementations presented are
written using the Tensorflow framework and the SciPy [10]
library as an interface to BLAS functions.

Performance is reported as speedup over a baseline imple-
mentation written as faithfully as possible using the mathemat-
ical operations previously described. Other implementations
directly call specialized high performance library routines used
by the Tensorflow framework.

The main takeaway from the plot is that as the level of
abstraction increases, more aggressive optimizations can be
performed, and thus faster implementations can be attained.
Note that the eigen-decomposition function used in Tensorflow
requires a full matrix as input. When the input sizes are
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Fig. 1. Computation blocks that describe the MUSIC algorithm at different levels of abstractions. As we raise the level of abstraction (from left-to-right), we
increase the amount of information that is encapsulated within each computational block. The information captured includes details (e.g. symmetry of that

goes beyond the mathematics).

Music: Performance Impacts of Abstraction Levels
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Fig. 2. Performance of MUSIC algorithm implementations for different
radar sizes and sampling rates s. Implementations that use a higher level
of abstraction perform better, especially for the radar arrays on the higher
end of the spectrum.

small, the cost of making a triangular matrix (as part of
exploiting symmetry) into a full matrix out-weighs the benefit
of exploiting symmetry. As such, the implementation that
exploits symmetry is less performant for small input sizes.

III. ABSTRACTION FOR INTELLIGENT RADAR

In recent years, machine learning is increasingly being
used in the context of phased array and signal processing
algorithms [11]-[13]. In this section, we discuss abstractions
that are required to improve performance of machine learning
for radar processing algorithms on COTS architectures using
the LISTA model to perform super-resolution to obtain higher
angular accuracy.
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A. Super-resolution with the LISTA Model

The problem of performing object detection can be formu-
lated as a sparse coding problem using the LASSO formula-
tion:

min 2 ly — Az] + 2], ©
where y € CM denote the received signals from the antennas,
A € CM*N is the specific sensing matrix such that M < N,
x € CV represents the object detection vector that is to be
recovered.

An approach for solving Equation 6 is to use the Iterative
Shrinkage-Thresholding Algorithm (ISTA) which computes
the following expression at the k* iteration:

<:ck + %AT(y — Axk)) ,

where 7 is the soft-thresholding function and L is the largest
eigenvalue of A A. A drawback of using ISTA is that it can
take a large number of iterations, and consequently a long time
in order to get accurate results.

It has been recognized that individual iterations from an
iterative approach can be turned into separate layers of a feed-
forward network [14], [15]. This forms the basis of the LISTA
model, and it has been shown that the LISTA model often
requires a significantly smaller number of iterations to get the
same accuracy as the ISTA approach. Here, the expression
computed in each iteration of ISTA is translated into a single
feed-forward layer that computes

k+1 _
€T —77%

xt-‘rl & Not (le + Wth) ) Vit = 1,2,--- 5T7 (7

leading to a T-layers feed-forward neural network. Here,
(0*, W1, Ws) denote the model parameters in the ¢-th layer,
n(+) denotes the soft-threshold function with learned param-
eter 6%, and x! is the output of the t-th layer (20 = 0).
Wi = AT and Wy = I — A" A, are trained weight
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Fig. 3. Diagram of the LISTA model. For our discussion, we considered a
model, consisting of 6 layers, that has been trained for an input of 8 antenna
elements, 64 samples, and produces an output that is equivalent of 32 antenna
elements, 64 samples.

matrices. A pictorial representation of the LISTA model is
shown in Figure 3, and the performance of the LISTA model
for different synthetic input data and comparison with other
approaches is shown in Figure 4.

1) Adapting LISTA for array processing: Within the context
of radar processing, the inputs to the LISTA model are the
samples from the antenna elements. This requires adapting
the LISTA model to handle complex inputs. However, ma-
chine learning with complex arithmetic is not a data format
supported by commonly used machine learning frameworks
such as Tensorflow!. A common approach taken by many
machine learning frameworks is to perform complex arithmetic
manually. This means that the real and imaginary components
of the inputs and outputs are first separated, and then computed
using separate real-arithmetic operations. For instance, for a
complex matrix-vector multiplication ¢ = Ab, the components
are computed as

Cr = A»,«br - Azbl

c; = Ab; + Ab,

Where the variable subscripts r and ¢ represent the real and
imaginary components respectively. In the case of LISTA, the
2 matrix-vector products in Equation 7, are rewritten as 8
matrix-vector products of the corresponding components. We
adopt this approach as our baseline LISTA implementations.

B. Raising the level of abstractions

1) Native Complex machine learning layers: While math-
ematically correct, implementing a complex operation (e.g.
matrix-matrix multiplication) as multiple real routines is usu-
ally slower on modern COTS architecture. This is because
there are often high performance complex arithmetic routines
that can be leveraged for better performance. As such, we
extended Tensorflow through their customization interface to
create a specialized machine learning layer for computing with
complex arithmetic. Following this extension, our implemen-
tation performs the 2 matrix-vector multiplication on complex
values, in alignment with Equation 7.

't should be noted that Tensorflow supports complex arithmetic, but the
machine learning module in Tensorflow does not support machine learning
with complex arithmetic.
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Fig. 4. Comparison of super resolution results for different methods using
synthetic data created using different sparsity ratios. The ground truth data
(left-most) for the top and middle row are generated assuming 32 antenna
elements where 0.5% and 2% of the values are non-zeros. The bottom row
has a sparsity of 1% but the points are generated in clusters/blocks. The
ground truth was then sub-sampled to simulate an 8 antenna elements input.
In all cases, the LISTA model was able to recover original the radar signal
more accurately than the two other approaches.

2) Beyond vector-operations: The LISTA model in the
previous subsection describes the computation on a single
frame worth of radar data, where the entire frame is treated as
a single vector y in Equation 7. Similar to the optimization for
the MUSIC algorithm, we can group multiple frames worth of
data and cast the matrix-vector operations into matrix-matrix
operations, i.e.

X e (WY + WoXh), ¥t =1,2,...,T,

where the columns of Y are received signals for a data frame.
3) Optimizing across computational blocks: Equation 7
gives us an end-to-end picture of the computation of the LISTA
model. Note that the intermediate result, Wiy, is the same
for all layers from 1 to 7. We recognize this reuse of the
intermediate value and reorganize the computation as:

A =

Wiy
it T]gt(Z—i—ngt), Vi=1,2,---,T,

Using this method, we only have to compute z once.
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Fig. 5. Performance comparisons of different implementations of the LISTA model with 2x angular resolution. The baseline uses real vector computations
to emulate complex. The 3 levels of abstraction we show are, 1) complex vector operations per frame, 2) complex matrix operations over the entire batch
and 3) complex matrices with a reused intermediate output. For the CPU implementations on the left, each level of abstraction yields progressively higher
speedup over the baseline. The GPU implementations on the right show a similar trend, however, for larger sizes, performing the redundant computation is

faster than reusing intermediates

C. LISTA Performance with different levels of abstraction

Figure 5 shows the impact of designing LISTA implemen-
tations given information at different levels of abstraction. All
our implementations are written in C++ because Tensorflow’s
machine learning framework does not easily support complex
operations. It should be noted that our baseline code is our best
attempt at staying faithful to the interfaces Tensorflow offers.
This captures the impact of the low-level of abstraction, while
avoiding overheads due to Python’s runtime. Performance is
reported as speedup over the baseline implementation that
implements LISTA using only real arithmetic computations
(labelled Real Vector). Each frame of radar data is 8 x 64, or
512 elements. We vary the number of batches to see the impact
of grouping them together as matrix-matrix multiplication.

1) CPU performance: The CPU results are obtained on an
Intel Rocket Lake Core 19-11900K. Switching to 2 native com-
plex matrix-vector multiplications instead of using 8 real arith-
metic multiplications yielded a small benefit over the baseline
implementation. The bulk of the performance improvement
is attained by computing the LISTA model for multiple data
frames simultaneously. Even for a small number of frames
(4), a speedup of 3.7x, and up to 18.2x for a larger number of
frames (50) can be attained. By avoiding re-computing WY
we gain a small benefit when the number of frames is small
but as the number of frames increases, the performance benefit
of this optimization increases significantly.

2) GPU performance: The GPU implementations were
run on an AMD Vega 64. We use the same 3 styles of
implementation as the CPU. Using a native complex matrix-
vector multiplication is almost the same as using the emulated
real matrix-vector multiplication. This may be because the size
of each frame (512 elements) is too small to utilize the GPU
well. In fact, when the batch size is 4, even grouping the
batches together is not enough to efficiently use the GPU. For
this case, all 4 implementations are nearly identical.

For the larger batch sizes greater than 4, casting the com-
putation as matrix operations is highly effective, attaining a
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speedup between 27 and 59 times over the real matrix-vector
implementation. The optimization to avoid re-computation
reduced the number of operations performed in each computa-
tional block. For batch sizes 10 and 20, this results in a higher
speedup (up to 68x over the real matrix-vector). However, for
batch sizes 30 - 50, avoiding re-computation is up to 8%
slower than the complex matrix-matrix implementation that
performs the re-computations. This may be due to the reduced
number of operations per computational block. Such problem-
specific trade-offs are enabled by higher level abstractions and
warrant further study.

IV. RELATED WORK

In this section, we review related works for improving the
performance from high level abstractions.

A. Domain Specific Languages and Frameworks

Domain specific languages such as Tensorflow [16],
Numpy [17] and SciPy [10] encapsulate common function-
alities used in particular domains. These high level descrip-
tions of operations allow high-level developers to be more
productive by giving them the ability to program in terms
they are very familiar with. However, the level of abstraction
at which domain specific languages are described may make
it difficult for a lower level library or compiler to produce
performance code. This work highlights that in order to get
performance improvements, it is necessary to go above and
beyond the natural way by which computation in the domain is
described. For example, batching of multiple vector operations
into operations involved matrices is often not performed.
This is because these optimization opportunities are often left
for developers, who are domain experts but non-performance
experts, to identify and exploit.

B. High Performance Libraries

High performance libraries that support commonly used
interfaces such as the Basic Linear Algebra Subprograms
(BLAS) and Linear Alegbra package (LAPACK) [18] provide
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efficient implementations for specific architectures. However,
these often rely on the developer being well-versed with
specific routines within these libraries. Performance is reliant
on the choice of the appropriate routine. While some high
performance libraries are used in many other domain-specific
frameworks, the mappings from domain specific routines to
library routines often do not exploit specialized routines in
the libraries.

V. CONCLUSION

In this paper, we discussed and demonstrated that raising
the level of abstraction is necessary in order to efficiently
map array algorithms onto commercial-off-the-shelf (COTS)
architectures. This higher level of abstraction is needed to
1) increase the number of computations per computational
block, 2) capture numerical properties of the matrices/tensors
that can be utilized for performance optimization, and 3)
perform higher level optimizations that cut across traditional
computational blocks.

Through two array algorithms (one classical, and one ML-
based), we demonstrate the benefits of using higher level
descriptions. We show that algorithms implemented using
a higher level of abstraction often run significantly faster
than baseline implementations written faithfully based on the
mathematical description of the algorithm. In addition to
higher performance, a higher level of abstraction provides the
flexibility of changing the underlying implementation to best
address the problem size and COTS architecture at hand.

The abstractions and optimizations presented are not spe-
cific to the algorithms presented in this paper. Many of
the abstractions (e.g. correlation, and applying of weights
to steering vectors) are also used in radar algorithms such
as the Space-Time Adaptive Processing [19]. This suggests
that a high-level language based on the presented abstractions
could be designed, and the optimizations enabled by the
abstractions could be automatically applied using a domain-
specific compiler build using the Multi-Level intermediate
language (MLIR) [20] framework.
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